tslearn Documentation
Release 0.6.3

Romain Tavenard

Mar 20, 2024

CONTENTS

1 Quick-start guide 3
1.1 Installation o L e e e e e e e e e e e e 3
1.2 Getting started L L e e e e e e e e e e e 4
1.3 Methods for variable-length time series oL 6
1.4 Backendselectionanduse L e e 8
1.5 Integration with other Python packages 12
1.6 Contributing o e e e e e e e e e e e 15
2 User Guide 19
2.1 Dynamic Time Warping o i i e e e e e e e e e e 19
2.2 Longest Common Subsequence i e e e 23
2.3 Kernel Methods e e e 25
2.4 Time Series CIustering o it i e e e e e 27
2.5 Shapelets e e e e e e e e e e e e e 28
2.6 Matrix Profile e 30
2.7 Early Classification of Time Series e 30
3 API Reference 33
3.1 tslearn.baryCenters L e e e e e e e e e e e e e e e e e e e 34
3.2 tslearn.clustering L e 39
3.3 tslearn.datasets L e e e e e e e e e e e 56
34 tslearn.early_classification 62
3.5 tSlearn.generators a e 69
3.6 tslearn.matrix_profile L L. e e e e e e e 72
3.7 tslearn.metriCs e 76
3.8 tslearn.neural_network L L L e e 116
3.9 tslearnneighborso L 125
3,10 tsSlearn.piCCewise v v i e 144
301 tslearn.preproCessing v v i e 162
3.12 tslearn.shapelets L e e e e e e 170
3.3 tslearn.svm . ..o e e e e 180
3.14 tslearn.utils . . . L. e e e e e 192
4 Gallery of examples 211
41 MEtriCS . . . o o e e e e e e e e e e e e e 211
4.2 Nearest Neighbors o e 211
4.3 Clustering and Barycenters Lo e e e e 211
4.4 Classification o e e e e 211
4.5 Automatic differentiationo 211
4.6 Miscellaneous e e e e e e e e 211

5 Citing tslearn
Bibliography
Python Module Index

Index

265

267

271

273

tslearn Documentation, Release 0.6.3

tslearn is a Python package that provides machine learning tools for the analysis of time series. This package builds
on (and hence depends on) scikit-learn, numpy and scipy libraries.

This documentation contains a quick-start guide (including installation procedure and basic usage of the toolkit), a
complete API Reference, as well as a gallery of examples.

Finally, if you use tslearn in a scientific publication, we would appreciate citations.

CONTENTS

tslearn Documentation, Release 0.6.3

2 CONTENTS

CHAPTER
ONE

QUICK-START GUIDE

For a list of functions and classes available in tslearn, please have a look at our AP/ Reference.

1.1 Installation

1.1.1 Using conda

The easiest way to install tslearn is probably via conda:

conda install -c conda-forge tslearn

1.1.2 Using PyPI

Using pip should also work fine:

python -m pip install tslearn

In this case, you should have numpy, cython and C++ build tools available at build time.

1.1.3 Using latest github-hosted version

If you want to get tslearn’s latest version, you can refer to the repository hosted at github:
python -m pip install https://github.com/tslearn-team/tslearn/archive/main.zip

In this case, you should have numpy, cython and C++ build tools available at build time.

It seems on some platforms Cython dependency does not install properly. If you experiment such an issue, try installing
it with the following command:

python -m pip install cython

before you start installing tslearn. If it still does not work, we suggest you switch to conda installation.

tslearn Documentation, Release 0.6.3

1.1.4 Other requirements

tslearn builds on (and hence depends on) scikit-learn, numpy and scipy libraries.

If you plan to use the tslearn.shapelets module from tslearn, tensorflow (v2) should also be installed. h5py
is required for reading or writing models using the hdf5 file format. In order to load multivariate datasets from
the UCR/UEA archive using the tslearn.datasets.UCR_UEA_datasets class, installed scipy version should be
greater than 1.3.0.

1.2 Getting started

This tutorial will guide you to format your first time series data, import standard datasets, and manipulate them using
dedicated machine learning algorithms.

1.2.1 Time series format

First, let us have a look at what tslearn time series format is. To do so, we will use the to_time_series utility from
tslearn.utils:

>>> from tslearn.utils import to_time_series

>>> my_first_time_series = [1, 3, 4, 2]

>>> formatted_time_series = to_time_series(my_first_time_series)
>>> print(formatted_time_series.shape)

4, D

In tslearn, a time series is nothing more than a two-dimensional numpy array with its first dimension corresponding
to the time axis and the second one being the feature dimensionality (1 by default).

Then, if we want to manipulate sets of time series, we can cast them to three-dimensional arrays, using
to_time_series_dataset. If time series from the set are not equal-sized, NaN values are appended to the shorter
ones and the shape of the resulting array is (n_ts, max_sz, d) where max_sz is the maximum of sizes for time
series in the set.

>>> from tslearn.utils import to_time_series_dataset

>>> my_first_time_series = [1, 3, 4, 2]

>>> my_second_time_series = [1, 2, 4, 2]

>>> formatted_dataset = to_time_series_dataset([my_first_time_series, my_second_time_

—series])

>>> print(formatted_dataset.shape)

2, 4, D

>>> my_third_time_series = [1, 2, 4, 2, 2]

>>> formatted_dataset = to_time_series_dataset([my_first_time_series,
my_second_time_series,
my_third_time_series])

>>> print(formatted_dataset.shape)

@3, 5, D

4 Chapter 1. Quick-start guide

tslearn Documentation, Release 0.6.3

1.2.2 Importing standard time series datasets

If you aim at experimenting with standard time series datasets, you should have a look at the tslearn.datasets.

>>> from tslearn.datasets import UCR_UEA_datasets

>>> X_train, y_train, X_test, y_test = UCR_UEA_datasets().load_dataset("TwoPatterns")
>>> print(X_train.shape)

(1000, 128, 1)

>>> print(y_train.shape)

(1000,)

Note that when working with time series datasets, it can be useful to rescale time series using tools from the tslearn.
preprocessing.

If you want to import other time series from text files, the expected format is:
« each line represents a single time series (and time series from a dataset are not forced to be the same length);
* in each line, modalities are separated by a | character (useless if you only have one modality in your data);
* in each modality, observations are separated by a space character.

Here is an example of such a file storing two time series of dimension 2 (the first time series is of length 3 and the
second one is of length 2).

5/3.0 2.0 1.0

0.0 2.
2.014.333 2.12

1.0 0.0
1.0 2.0
To read from / write to this format, have a look at the tslearn.utils:

>>> from tslearn.utils import save_time_series_txt, load_time_series_txt
>>> time_series_dataset = load_time_series_txt("path/to/your/file.txt")
>>> save_time_series_txt("path/to/another/file.txt", dataset_to_be_saved)

1.2.3 Playing with your data

Once your data is loaded and formatted according to tslearn standards, the next step is to feed machine learning
models with it. Most tslearn models inherit from scikit-learn base classes, hence interacting with them is very
similar to interacting with a scikit-learn model, except that datasets are not two-dimensional arrays, but rather
tslearn time series datasets (i.e. three-dimensional arrays or lists of two-dimensional arrays).

>>> from tslearn.clustering import TimeSeriesKMeans
>>> km = TimeSeriesKMeans(n_clusters=3, metric="dtw")
>>> km. fit(X_train)

As seen above, one key parameter when applying machine learning methods to time series datasets is the metric to be
used. You can learn more about it in the dedicated section of this documentation.

1.2. Getting started 5

tslearn Documentation, Release 0.6.3

1.3 Methods for variable-length time series

This page lists machine learning methods in zslearn that are able to deal with datasets containing time series of different
lengths. We also provide example usage for these methods using the following variable-length time series dataset:

from tslearn.utils import to_time_series_dataset
X = to_time_series_dataset([[1, 2, 3, 41, [1, 2, 31, [2, 5, 6, 7, &, 911)
y [0, 0, 1]

1.3.1 Classification

* tslearn.neighbors.KNeighborsTimeSeriesClassifier
e tslearn.svm.TimeSeriesSVC

e tslearn.shapelets.LearningShapelets

Examples

from tslearn.neighbors import KNeighborsTimeSeriesClassifier
knn = KNeighborsTimeSeriesClassifier(n_neighbors=2)
knn.fit(X, y)

from tslearn.svm import TimeSeriesSVC
clf = TimeSeriesSVC(C=1.0, kernel="gak")
clf. fit(X, y)

from tslearn.shapelets import LearningShapelets
clf = LearningShapelets(n_shapelets_per_size={3: 1})
clf. fit(X, y)

1.3.2 Regression

e tslearn.svm.TimeSeriesSVR

Examples

from tslearn.svm import TimeSeriesSVR
clf = TimeSeriesSVR(C=1.0, kernel="gak")
y_reg = [1.3, 5.2, -12.2]

clf. fit(X, y_reg)

6 Chapter 1. Quick-start guide

tslearn Documentation, Release 0.6.3

1.3.3 Nearest-neighbor search

e tslearn.neighbors.KNeighborsTimeSeries

Examples

from tslearn.neighbors import KNeighborsTimeSeries

knn = KNeighborsTimeSeries(n_neighbors=2)

knn. fit(X)

knn.kneighbors() # Search for neighbors using series from X' as queries
knn.kneighbors(X2) # Search for neighbors using series from ‘X2 as queries

1.3.4 Clustering

e tslearn.clustering.KernelKMeans
e tslearn.clustering.TimeSeriesKMeans

e tslearn.clustering.silhouette_score

Examples

from tslearn.clustering import KernelKMeans
gak_km = KernelKMeans(n_clusters=2, kernel="gak")
labels_gak = gak_km.fit_predict(X)

from tslearn.clustering import TimeSeriesKlMeans

km = TimeSeriesKMeans(n_clusters=2, metric="dtw")

labels = km.fit_predict(X)

km_bis = TimeSeriesKMeans(n_clusters=2, metric="softdtw")
labels_bis = km_bis.fit_predict(X)

from tslearn.clustering import TimeSeriesKMeans, silhouette_score
km = TimeSeriesKMeans(n_clusters=2, metric="dtw'")

labels = km.fit_predict(X)

silhouette_score(X, labels, metric="dtw")

1.3.5 Barycenter computation

e tslearn.barycenters.dtw_barycenter_averaging

e tslearn.barycenters.softdtw_barycenter

1.3. Methods for variable-length time series 7

tslearn Documentation, Release 0.6.3

Examples

from tslearn.barycenters import dtw_barycenter_averaging
bar = dtw_barycenter_averaging(X, barycenter_size=3)

from tslearn.barycenters import softdtw_barycenter
from tslearn.utils import ts_zeros
initial_barycenter = ts_zeros(sz=5)

bar = softdtw_barycenter(X, init=initial_barycenter)

1.3.6 Model selection

Also, model selection tools offered by scikit-learn can be used on variable-length data, in a standard way, such as:

from sklearn.model_selection import KFold, GridSearchCV
from tslearn.neighbors import KNeighborsTimeSeriesClassifier

knn = KNeighborsTimeSeriesClassifier(metric="dtw'")
p_grid = {"n_neighbors": [1, 5]}

cv = KFold(n_splits=2, shuffle=True, random_state=0)
clf = GridSearchCV(estimator=knn, param_grid=p_grid, cv=cv)
clf. fit(X, y)

1.3.7 Resampling

e tslearn.preprocessing.TimeSeriesResampler

Finally, if you want to use a method that cannot run on variable-length time series, one option would be to first resample
your data so that all your time series have the same length and then run your method on this resampled version of your
dataset.

Note however that resampling will introduce temporal distortions in your data. Use with great care!

from tslearn.preprocessing import TimeSeriesResampler

resampled_X = TimeSeriesResampler(sz=X.shape[1]).fit_transform(X)

1.4 Backend selection and use

tslearn proposes different backends (NumPy and PyTorch) to compute time series metrics such as DTW and Soft-DTW.
The PyTorch backend can be used to compute gradients of metric functions thanks to automatic differentiation.

8 Chapter 1. Quick-start guide

tslearn Documentation, Release 0.6.3

1.4.1 Backend selection
A backend can be instantiated using the function instantiate_backend. To specify which backend should be in-
stantiated (NumPy or PyTorch), this function accepts four different kind of input parameters:

* astring equal to "numpy" or "pytorch".

* a NumPy array or a Torch tensor.

* a Backend instance. The input backend is then returned.

* None or anything else than mentioned previously. The backend NumPy is then instantiated.

Examples

If the input is the string "numpy", the NumPyBackend is instantiated.

>>> from tslearn.backend import instantiate_backend
>>> be = instantiate_backend(''numpy")

>>> print(be.backend_string)

"numpy"

If the input is the string "pytorch", the PyTorchBackend is instantiated.

>>> be = instantiate_backend('pytorch")
>>> print(be.backend_string)
"pytorch"

If the input is a NumPy array, the NumPyBackend is instantiated.

>>> import numpy as np

>>> be = instantiate_backend(np.array([0]))
>>> print(be.backend_string)

"numpy"

If the input is a Torch tensor, the PyTorchBackend is instantiated.

>>> import torch

>>> be = instantiate_backend(torch.tensor([0]))
>>> print(be.backend_string)

"pytorch"

If the input is a Backend instance, the input backend is returned.

>>> print(be.backend_string)
"pytorch"

>>> be = instantiate_backend(be)
>>> print(be.backend_string)
"pytorch"

If the input is None, the NumPyBackend is instantiated.

>>> be = instantiate_backend(None)
>>> print(be.backend_string)
"numpy"

1.4. Backend selection and use 9

tslearn Documentation, Release 0.6.3

If the input is anything else, the NumPyBackend is instantiated.

>>> be = instantiate_backend(""Hello, World!")
>>> print(be.backend_string)
"numpy"

The function instantiate_backend accepts any number of input parameters, including zero. To select which back-
end should be instantiated (NumPy or PyTorch), a for loop is performed on the inputs until a backend is selected.

>>> be = instantiate_backend(1l, None, "Hello, World!", torch.tensor([0]), "numpy")
>>> print(be.backend_string)
"pytorch"

If none of the inputs are related to NumPy or PyTorch, the NumPyBackend is instantiated.

>>> be = instantiate_backend(1l, None, "Hello, World!™)
>>> print(be.backend_string)
"numpy"

1.4.2 Use the backends

The names of the attributes and methods of the backends are inspired by the NumPy backend.

Examples

Create backend objects.

>>> be = instantiate_backend("pytorch")
>>> mat = be.array([[0 , 1], [2, 3]], dtype=float)
>>> print(mat)
tensor([[0., 1.7,
[2., 3.]], dtype=torch.float64)

Use backend functions.

>>> norm = be.linalg.norm(mat)
>>> print(norm)
tensor(3.7417, dtype=torch.float64)

1.4.3 Choose the backend used by metric functions

tslearn’s metric functions have an optional input parameter “be” to specify the backend to use to compute the metric.

10 Chapter 1. Quick-start guide

tslearn Documentation, Release 0.6.3

Examples

>>> import torch

>>> from tslearn.metrics import dtw

>>> sl = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> s2 = torch.tensor([[3.0], [4.0], [-3.0]1])

>>> sim = dtw(sl, s2, be="pytorch")

>>> print(sim)

sim tensor(6.4807, grad_fn=<SqrtBackward®>)

By default, the optional input parameter be is equal to None. Note that the first line of the function dtw is:

be = instantiate_backend(be, sl1, s2)

Therefore, even if be=None, the PyTorchBackend is instantiated and used to compute the DTW metric since s1 and
s2 are Torch tensors.

>>> sim = dtw(sl, s2)
>>> print(sim)
sim tensor(6.4807, grad_fn=<SqgrtBackward®>)

1.4.4 Automatic differentiation

The PyTorch backend can be used to compute the gradients of the metric functions thanks to automatic differentiation.

Examples

Compute the gradient of the Dynamic Time Warping similarity measure.

>>> sl torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> s2 torch.tensor([[3.0], [4.0], [-3.0]1)
>>> sim = dtw(sl, s2, be="pytorch™)
>>> sim.backward()
>>> d_sl = sl.grad
>>> print(d_sl)
tensor([[-0.3086],
[-0.1543],
[0.7715]1])

Compute the gradient of the Soft-DTW similarity measure.

>>> from tslearn.metrics import soft_dtw

>>> tsl = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)

>>> ts2 = torch.tensor([[3.0], [4.0], [-3.0]1D)

>>> sim = soft_dtw(tsl, ts2, gamma=1.0, be="pytorch", compute_with_backend=True)
>>> print(sim)

tensor(41.1876, dtype=torch.float64, grad_fn=<SelectBackward®>)

>>> sim.backward()

>>> d_tsl = tsl.grad

>>> print(d_tsl)

tensor([[-4.0001]7,

(continues on next page)

1.4. Backend selection and use 11

tslearn Documentation, Release 0.6.3

(continued from previous page)

[-2.2852],
[10.1643]11)

1.5 Integration with other Python packages

tslearn is a general-purpose Python machine learning library for time series that offers tools for pre-processing and
feature extraction as well as dedicated models for clustering, classification and regression. To ensure compatibility with
more specific Python packages, we provide utilities to convert data sets from and to other formats.

tslearn.utils.to_time_series_dataset () isa general function that transforms an array-like object into a three-
dimensional array of shape (n_ts, sz, d) with the following conventions:

* the fist axis is the sample axis, n_ts being the number of time series;
* the second axis is the time axis, sz being the maximum number of time points;
* the third axis is the dimension axis, d being the number of dimensions.

This is how a data set of time series is represented in tslearn.

The following sections briefly explain how to transform a data set from tslearn to another supported Python package
and vice versa.

1.5.1 scikit-learn

scikit-learn is a popular Python package for machine learning. tslearn.utils.to_sklearn_dataset () converts
a data set from tslearn format to scikit-learn format. To convert a data set from scikit-learn, you can use
tslearn.utils.to_time_series_dataset().

>>> from tslearn.utils import to_sklearn_dataset
>>> to_sklearn_dataset([[1, 2], [1, 4, 311)
array([[1., 2., nan],
[1., 4., 3.1
>>> to_time_series_dataset([[1., 2., Nonme], [1., 4., 3.1
array([[[1.1,
[215

[nan]],

[

i
4.
3.

[B e B |
—_

1D

1.5.2 pyts

pyts is a Python package dedicated to time series classification. tslearn.utils.to_pyts_dataset() and
tslearn.utils. from_pyts_dataset () allow users to convert a data set from tslearn format to pyts format
and vice versa.

>>> from tslearn.utils import from_pyts_dataset, to_pyts_dataset
>>> from_pyts_dataset([[1, 2], [1, 4]11)
array([[[1],

(continues on next page)

12 Chapter 1. Quick-start guide

https://scikit-learn.org
https://pyts.readthedocs.io

tslearn Documentation, Release 0.6.3

(continued from previous page)

(211,

[ril,
(4111

>>> to_pyts_dataset([[[1], [2]1], [[1], [411D)
array([[1., 2.7,
[1., 4.1D

1.5.3 seglearn

seglearn is a python package for machine learning time series or sequences. tslearn.utils.
to_seglearn_dataset() and tslearn.utils.from_seglearn_dataset() allow users to convert a data
set from tslearn format to seglearn format and vice versa.

>>> from tslearn.utils import from_seglearn_dataset, to_seglearn_dataset
>>> from_seglearn_dataset([[1, 2], [1, 4, 311)
array([[[1.1,

[2:1;

[nan]],

[C1.1,
[4.1,
[3.11D
>>> to_seglearn_dataset([[[1], [2], [Nonell, [[1], [4], [311DD
array([array([[1.],
[2.11),
array([[1.],
[4.],
[3.11)], dtype=object)

1.5.4 stumpy

stumpy is a powerful and scalable Python library for computing a Matrix Profile, which can be used for
a variety of time series data mining tasks. tslearn.utils.to_stumpy_dataset() and tslearn.utils.
from_stumpy_dataset () allow users to convert a data set from tslearn format to stumpy format and vice versa.

>>> import numpy as np
>>> from tslearn.utils import from_stumpy_dataset, to_stumpy_dataset
>>> from_stumpy_dataset([np.array([1, 2]), np.array([1l, 4, 31D
array([[[1.1,

[S2P

[nan]],

L

L dollg
[4.1,

[3.11D
>>> to_stumpy_dataset([[[1], [2], [Nomell, [[1], [41, [311D)
[array([1., 2.]), array([l., 4., 3.D)]

1.5. Integration with other Python packages 13

https://dmbee.github.io/seglearn/
https://stumpy.readthedocs.io/

tslearn Documentation, Release 0.6.3

1.5.5 sktime

sktime is a scikit-learn compatible Python toolbox for learning with time series. tslearn.utils.
to_sktime_dataset() and tslearn.utils.from_sktime_dataset() allow users to convert a data set from
tslearn format to sktime format and vice versa. pandas is a required dependency to use these functions.

>>> import pandas as pd
>>> from tslearn.utils import from_sktime_dataset, to_sktime_dataset
>>> df = pd.DataFrame()
>>> df["dim_0"] = [pd.Series([1, 2]), pd.Series([1, 4, 31)]
>>> from_sktime_dataset(df)
array([[[1.1,
[2.1
[nan]],
[r 1.1,
[4:5,

[3.11D
>>> to_sktime_dataset([[[1], [2], [Nomell, [[1], [4]1, [3]11]).shape

@2, D

1.5.6 pyflux

pyflux is a library for time series analysis and prediction. tslearn.utils.to_pyflux_dataset() and tslearn.
utils. from_pyflux_dataset () allow users to convert a data set from tslearn format to pyflux format and vice
versa. pandas is a required dependency to use these functions.

>>> import pandas as pd
>>> from tslearn.utils import from_pyflux_dataset, to_pyflux_dataset
>>> df = pd.DataFrame([1l, 2], columns=["dim_0"])
>>> from_pyflux_dataset(df)
array([[[1.],
[2.11D
>>> to_pyflux_dataset([[[1], [2]]11).shape
2, D

1.5.7 tsfresh

tsfresh is a python package automatically calculating a large number of time series characteristics. tslearn.utils.
to_tsfresh_dataset() and tslearn.utils.from_tsfresh_dataset() allow users to convert a data set from
tslearn format to tsfresh format and vice versa. pandas is a required dependency to use these functions.

>>> import pandas as pd
>>> from tslearn.utils import from_tsfresh_dataset, to_tsfresh_dataset
>>> df = pd.DataFrame([[0, 0, 1.0],

[0, 1, 2.01,
[1, 0, 1.0],
[1, 1, 4.0],
[1, 2, 3.0]], columns=["id"', 'time', 'dim_0'])

>>> from_tsfresh_dataset(df)
array([[[1.7,

(continues on next page)

14 Chapter 1. Quick-start guide

https://alan-turing-institute.github.io/sktime/
https://pyflux.readthedocs.io
https://tsfresh.readthedocs.io

tslearn Documentation, Release 0.6.3

(continued from previous page)

L 2o

[nan]],

[[1.1,

[4.1,
[3.11D

>>> to_tsfresh_dataset([[[1], [2], [Nomell, [[1]1, [4], [3]111).shape

(G, 3)

1.
4.
3,

1.5.8 cesium

cesium is an open-source platform for time series inference. tslearn.utils.to_cesium_dataset() and tslearn.
utils. from_cesium_dataset () allow users to convert a data set from tslearn format to cesium format and vice
versa. cesium is a required dependency to use these functions.

>>> from tslearn.utils import from_cesium_dataset, to_cesium_dataset
>>> from cesium.data_management import TimeSeries
>>> from_cesium_dataset([TimeSeries(m=[1, 2]), TimeSeries(m=[1, 4, 31)1)
array([[[1.1,

L 2.

[nan]],

[C1.1,
[4.1,
[3.11D
>>> len(to_cesium_dataset([[[1], [2], [Nonell, [[11, [4]1, [3111))
2

1.6 Contributing

First of all, thank you for considering contributing to tslearn. It’s people like you that will help make tslearn a
great toolkit.

Contributions are managed through GitHub Issues and Pull Requests.
We are welcoming contributions in the following forms:

* Bug reports: when filing an issue to report a bug, please use the search tool to ensure the bug hasn’t been
reported yet;

¢ New feature suggestions: if you think tslearn should include a new algorithm, please open an issue to ask for
it (of course, you should always check that the feature has not been asked for yet :). Think about linking to a pdf
version of the paper that first proposed the method when suggesting a new algorithm.

* Bug fixes and new feature implementations: if you feel you can fix a reported bug/implement a suggested
feature yourself, do not hesitate to:

1. fork the project;
2. implement your bug fix;

3. submit a pull request referencing the ID of the issue in which the bug was reported / the feature was sug-
gested;

1.6. Contributing 15

http://cesium-ml.org

tslearn Documentation, Release 0.6.3

If you would like to contribute by implementing a new feature reported in the Issues, maybe starting with Issues that
are attached the “good first issue’ label would be a good idea.

When submitting code, please think about code quality, adding proper docstrings including doctests with high code
coverage.

1.6.1 More details on Pull requests

The preferred workflow for contributing to tslearn is to fork the main repository on GitHub, clone, and develop on a
branch. Steps:

1.

6.

Fork the project repository by clicking on the ‘Fork’ button near the top right of the page. This creates a copy of
the code under your GitHub user account. For more details on how to fork a repository see this guide.

Clone your fork of the tslearn repo from your GitHub account to your local disk:

$ git clone git@github.com:YourLogin/tslearn.git
$ cd tslearn

Create a my-feature branch to hold your development changes. Always use a my-feature branch. It’s good
practice to never work on the master branch:

$ git checkout -b my-feature

Develop the feature on your feature branch. To record your changes in git, add changed files using git add and
then git commit files:

$ git add modified_files
$ git commit

. Push the changes to your GitHub account with:

$ git push -u origin my-feature

Follow these instructions to create a pull request from your fork. This will send an email to the committers.

(If any of the above seems like magic to you, please look up the Git documentation on the web, or ask a friend or
another contributor for help.)

Pull Request Checklist

We recommended that your contribution complies with the following rules before you submit a pull request:

¢ Follow the PEP8 Guidelines.

* If your pull request addresses an issue, please use the pull request title to describe the issue and mention the issue

number in the pull request description. This will make sure a link back to the original issue is created.
All public methods should have informative docstrings with sample usage presented as doctests when appropriate.

Please prefix the title of your pull request with [MRG] (Ready for Merge), if the contribution is complete and
ready for a detailed review. An incomplete contribution — where you expect to do more work before receiving a
full review — should be prefixed [WIP] (to indicate a work in progress) and changed to [MRG] when it matures.
WIPs may be useful to: indicate you are working on something to avoid duplicated work, request broad review
of functionality or API, or seek collaborators. WIPs often benefit from the inclusion of a task list in the PR
description.

16

Chapter 1. Quick-start guide

https://github.com/tslearn-team/tslearn/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://github.com/tslearn-team/tslearn/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://github.com/tslearn-team/tslearn
https://github.com/tslearn-team/tslearn
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/creating-a-pull-request-from-a-fork
https://git-scm.com/documentation
https://github.com/blog/1375-task-lists-in-gfm-issues-pulls-comments

tslearn Documentation, Release 0.6.3

e When adding additional functionality, provide at least one example script in the tslearn/docs/examples/
folder. Have a look at other examples for reference. Examples should demonstrate why the new functionality is
useful in practice and, if possible, compare it to other methods available in tslearn.

¢ Documentation and high-coverage tests are necessary for enhancements to be accepted. Bug-fixes or new features
should be provided with non-regression tests. These tests verify the correct behavior of the fix or feature. In this
manner, further modifications on the code base are granted to be consistent with the desired behavior. For the
Bug-fixes case, at the time of the PR, this tests should fail for the code base in master and pass for the PR code.

 Atleast one paragraph of narrative documentation with links to references in the literature (with PDF links when
possible) and the example.

Here is a description of useful tools to check your code locally:

* No PEP8 or PEP257 errors; check with the flake8 Python package:

$ pip install flake8

$ flake8 path/to/module.py # check for errors in one file

$ flake8 path/to/folder # check for errors in all the files in a folder

$ git diff -u | flake8 --diff # check for errors in the modified code only

* To run the tests locally and get code coverage, use the pytest and pytest-cov Python packages:

$ pip install pytest pytest-cov
$ pytest --cov tslearn

* To build the documentation locally, install the following packages and run the make html command in the
tslearn/docs folder:

$ pip install sphinx==1.8.5 sphinx-gallery sphinx-bootstrap-theme nbsphinx
$ pip install numpydoc matplotlib

$ cd tslearn/docs

$ make html

The documentation will be generated in the _build/html. You can double click on index.html to open the
index page, which will look like the first page that you see on the online documentation. Then you can move to
the pages that you modified and have a look at your changes.

Bonus points for contributions that include a performance analysis with a benchmark script and profiling output.

1.6. Contributing 17

https://en.wikipedia.org/wiki/Non-regression_testing
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://flake8.pycqa.org/en/latest/
https://docs.pytest.org/en/latest/
https://pytest-cov.readthedocs.io/en/latest/

tslearn Documentation, Release 0.6.3

18 Chapter 1. Quick-start guide

CHAPTER
TWO

USER GUIDE

2.1 Dynamic Time Warping

Dynamic Time Warping (DTW)' is a similarity measure between time series. Let us consider two time series x =
(xo,...,&pn—1) and y = (yo, ..., Ym—1) of respective lengths n and m. Here, all elements z; and y; are assumed to
lie in the same d-dimensional space. In tslearn, such time series would be represented as arrays of respective shapes
(n, d) and (m, d) and DTW can be computed using the following code:

from tslearn.metrics import dtw, dtw_path

dtw_score = dtw(x, y)
Or, if the path is also an important information:
optimal_path, dtw_score = dtw_path(x, y)

2.1.1 Optimization problem

DTW between x and y is formulated as the following optimization problem:

DTW (z,y) = min | Z d(z;,y;)?
(i,4)€m

where ™ = [, ..., Tk] is a path that satisfies the following properties:
* itis alist of index pairs 73, = (i, jr) With0 < iy <nand 0 < jrp <m
e mp=(0,0)and g = (n—1,m — 1)
o forallk > 0, mx = (ig, ji) is related to mg—1 = (ix—1,Jr—1) as follows:
— g1 St <dpo1+ 1
- Jk=1 < Jk < Jr-1+1

Here, a path can be seen as a temporal alignment of time series such that Euclidean distance between aligned (ie.
resampled) time series is minimal.

The following image exhibits the DTW path (in white) for a given pair of time series, on top of the cross-similarity
matrix that stores d(x;, y,) values.

Code to produce such visualization is available in our Gallery of examples.

! H. Sakoe, S. Chiba, “Dynamic programming algorithm optimization for spoken word recognition,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 26(1), pp. 4349, 1978.

19

auto_examples/metrics/plot_dtw.html

tslearn Documentation, Release 0.6.3

2.1.2 Algorithmic solution

There exists an O(mn) algorithm to compute the exact optimum for this problem (pseudo-code is provided for time
series indexed from 1 for simplicity):

def dtw(x, y):
Initialization
for i = 1..n
for j = 1..m
C[i, j] = inf

C[0, 0] = 0.

Main loop
for i = 1..n
for j = 1..m
dist = d(x_i, y_j) ** 2
C[i, j] = dist + min(C[i-1, j], C[i, j-1]1, C[i-1, j-11)

return sqrt(C[n, m])

2.1.3 Using a different ground metric

By default, tslearn uses squared Euclidean distance as the base metric (i.e. d(-, -) in the optimization problem above
is the Euclidean distance). If one wants to use another ground metric, the code would then be:

from tslearn.metrics import dtw_path_from_metric
path, cost = dtw_path_from_metric(x, y, metric=compatible_metric)

in which case the optimization problem that would be solved would be:

DTW (z,y) = min Z d(zi,y;)
(i,5)em

where d~(-7 -) is the user-defined ground metric, denoted compatible_metric in the code snippet above.

2.1.4 Properties

Dynamic Time Warping holds the following properties:
* Vao,y, DTW(z,y) > 0
o Vo, DTW (z,2) =0

However, mathematically speaking, DTW is not a valid distance since it does not satisfy the triangular inequality.

20 Chapter 2. User Guide

tslearn Documentation, Release 0.6.3

2.1.5 Additional constraints
The set of temporal deformations to which DTW is invariant can be reduced by setting additional constraints on the set
of acceptable paths. These constraints typically consists in forcing paths to lie close to the diagonal.

First, the Sakoe-Chiba band is parametrized by a radius » (number of off-diagonal elements to consider, also called
warping window size sometimes), as illustrated below:

Fig. 1: n = m = 10,r = 3. Diagonal is marked in grey for better readability.

The corresponding code would be:

from tslearn.metrics import dtw
cost = dtw(x, y, global_constraint="sakoe_chiba", sakoe_chiba_radius=3)

Second, the Itakura parallelogram sets a maximum slope s for alignment paths, which leads to a parallelogram-shaped
constraint:

Fig. 2: n = m = 10, s = 2. Diagonal is marked in grey for better readability.

The corresponding code would be:

from tslearn.metrics import dtw
cost = dtw(x, y, global_constraint="itakura", itakura_max_slope=2.)

Alternatively, one can put an upper bound on the warping path length so as to discard complex paths, as described in’:

from tslearn.metrics import dtw_limited_warping_length
cost = dtw_limited_warping_length(x, y, max_length)

2 7.Zhang, R. Tavenard, A. Bailly, X. Tang, P. Tang, T. Corpetti Dynamic time warping under limited warping path length. Information Sciences,
vol. 393, pp. 91-107, 2017.

2.1. Dynamic Time Warping 21

tslearn Documentation, Release 0.6.3

2.1.6 Barycenters

Computing barycenter (also known as Fréchet means) of a set D for DTW corresponds to the following optimization
problem:

min Y DTW (i, z)?
y7i
z€D

Optimizing this quantity can be done through the DTW Barycenter Averaging (DBA) algorithm presented in’.

from tslearn.barycenters import dtw_barycenter_averaging
b = dtw_barycenter_averaging(dataset)

This is the algorithm at stake when invoking tslearn.clustering.TimeSeriesKMeans with metric="dtw".

2.1.7 soft-DTW

DTW is not differentiable with respect to its inputs because of the non-differentiability of the min operation. A differ-
entiable extension has been presented in* in which the min operator is replaced by soft-min, using the log-sum-exp
formulation:

soft-min, (a1, ...,a,) = —ylog Z e~/
soft-DTW hence depends on a hyper-parameter y that controls the smoothing of the resulting metric (squared DTW
corresponds to the limit case v — 0).

from tslearn.metrics import soft_dtw
soft_dtw_score = soft_dtw(x, y, gamma=.1)

When a strictly positive value is set for v, the corresponding alignment matrix corresponds to a blurred version of the
DTW one:

Also, barycenters for soft-DTW can be estimated through gradient descent:

from tslearn.barycenters import softdtw_barycenter
b = softdtw_barycenter(dataset, gamma=.1)

This is the algorithm at stake when invoking tslearn.clustering.TimeSeriesKMeans withmetric="softdtw".

3 F. Petitjean, A. Ketterlin & P. Gancarski. A global averaging method for dynamic time warping, with applications to clustering. Pattern
Recognition, Elsevier, 2011, Vol. 44, Num. 3, pp. 678-693
4 M. Cuturi, M. Blondel “Soft-DTW: a Differentiable Loss Function for Time-Series,” ICML 2017.

22 Chapter 2. User Guide

tslearn Documentation, Release 0.6.3

2.1.8 Examples Involving DTW variants

* Longest Common Subsequence

* Canonical Time Warping

* Dynamic Time Warping

* Soft Dynamic Time Warping

o DTW computation with a custom distance metric
* Barycenters

o Soft-DTW weighted barycenters

2.1.9 References

2.2 Longest Common Subsequence

Longest Common Subsequence (LCSS)' is a similarity measure between time series. Let us consider two time series
z = (zg,...,%Zn—1) and y = (Yo, . .., Ym—1) of respective lengths n and m. Here, all elements z; and y; are assumed
to lie in the same d-dimensional space. In tslearn, such time series would be represented as arrays of respective
shapes (n, d) and (m, d) and LCSS can be computed using the following code:

from tslearn.metrics import lcss, lcss_path

lcss_score = lcss(x, y)
Or, if the path is also an important information:
path, lcss_score = lcss_path(x, y)

2.2.1 Problem

The similarity S between x and y, given a positive real number e, is formulated as follows:

S(a,y,e) = LO25AY)

min(n, m)
The constant € is the matching threshold.

Here, a path can be seen as the parts of the time series where the Euclidean distance between them does not exceed a
given threshold, i.e., they are close/similar.

To retrieve a meaningful similarity value from the length of the longest common subsequence, the percentage of that
value regarding the length of the shortest time series is returned.

' M. Vlachos, D. Gunopoulos, and G. Kollios. 2002. “Discovering Similar Multidimensional Trajectories”, In Proceedings of the 18th Interna-
tional Conference on Data Engineering (ICDE ‘02). IEEE Computer Society, USA, 673.

2.2. Longest Common Subsequence 23

tslearn Documentation, Release 0.6.3

2.2.2 Algorithmic solution

There exists an O(n?) algorithm to compute the solution for this problem (pseudo-code is provided for time series
indexed from 1 for simplicity):

def lcss(x, y):
Initialization
for i = 0..n

Cli, 0] =0
for j = 0..m

C[o, j1 =0
Main loop

for i = 1..n
for j = 1..m
if dist(x_i, x_j) <= epsilon:
C[i, j] = C[i-1, j-1] + 1
else:
Cli, jl = max(C[i, j-11, C[i-1, jI)

return C[n, m] / min(n, m)

2.2.3 Using a different ground metric

By default, tslearn uses squared Euclidean distance as the base metric (i.e. dist() in the problem above is the
Euclidean distance). If one wants to use another ground metric, the code would then be:

from tslearn.metrics import lcss_path_from_metric
path, cost = lcss_path_from metric(x, y, metric=compatible_metric)

2.2.4 Properties

The Longest Common Subsequence holds the following properties:
* Va,y, LCSS(z,y) € [0,1]
o Va,y, LCSS(z,y) = LCSS(y, x)
o Vo, LCSS(xz,2) =1

The values returned by LCSS range from O to 1, the value 1 being taken when the two time series completely match.

2.2.5 Additional constraints
One can set additional constraints to the set of acceptable paths. These constraints typically consists in forcing paths
to lie close to the diagonal.

First, the Sakoe-Chiba band is parametrized by a radius r (number of off-diagonal elements to consider, also called
warping window size sometimes), as illustrated below:

The corresponding code would be:

from tslearn.metrics import lcss
cost = lcss(x, y, global_constraint="sakoe_chiba", sakoe_chiba_radius=3)

24 Chapter 2. User Guide

tslearn Documentation, Release 0.6.3

Fig. 3: n = m = 10,r = 3. Diagonal is marked in grey for better readability.

The Sakoe-Chiba radius corresponds to the parameter § mentioned in"*¢¢ > ! it controls how far in time we can go in
order to match a given point from one time series to a point in another time series.

Second, the Itakura parallelogram sets a maximum slope s for alignment paths, which leads to a parallelogram-shaped
constraint:

Fig. 4: n = m = 10, s = 2. Diagonal is marked in grey for better readability.

The corresponding code would be:

from tslearn.metrics import lcss
cost = lcss(x, y, global_constraint="itakura", itakura_max_slope=2.)

2.2.6 Examples Involving LCSS variants
* Longest Common Subsequence

* Longest Commom Subsequence with a custom distance metric

2.2.7 References
2.3 Kernel Methods

In the following, we will discuss the use of kernels to compare time series. A kernel k(-, -) is such that there exists an
unknown map ¢ such that:

k(x,y) = (2(x), ®(y))y

i.e. k(-,-) is the inner product between x and y in some (unknown) embedding space H. In practice, k(x,y) will be
large when x and y are similar and close to O when they are very dissimilar.

2.3. Kernel Methods 25

tslearn Documentation, Release 0.6.3

A large number of kernel methods from the machine learning literature rely on the so-called kernel trick, that consists in
performing computations in the embedding space H without ever actually performing any embedding. As an example,
one can compute distance between x and y in H via:

12(x) — (y)[I3, = (B(x) — B(y), 2(x) = 2(¥))y

) —
= (®(x), D(x))5, + (2(¥), ()3, — 2(2(x), (y)) 3,
k‘(X,X) + k(y’Y) - 2k(x7y)

Such computations are used, for example, in the kernel-k-means algorithm (see below).

2.3.1 Global Alignment Kernel

The Global Alignment Kernel (GAK) is a kernel that operates on time series.

It is defined, for a given bandwidth o, as:

|| N 12
k(Xa Y) = Z Hexp (-W)

rEA(x,y) i=1

where A(x,y) is the set of all possible alignments between series x and y.

It is advised in' to set the bandwidth o as a multiple of a simple estimate of the median distance of different points
observed in different time-series of your training set, scaled by the square root of the median length of time-series in
the set. This estimate is made available in tslearn through tslearn.metrics.sigma_gak:

from tslearn.metrics import gak, sigma_gak

sigma = sigma_gak(X)
k_01 = gak(X[0], X[1], sigma=sigma)

Note however that, on long time series, this estimate can lead to numerical overflows, which smaller values can avoid.

Finally, GAK is related to softDTW? through the following formula:

ftDT
k(x,y) = exp <—SO ! WA’(X7y))

v

where 7 is the hyper-parameter controlling softDTw smoothness, which is related to the bandwidth parameter of GAK
through v = 202.

2.3.2 Clustering and Classification

Kernel k-means’ is a method that uses the kernel trick to implicitly perform k-means clustering in the embedding space
associated to a kernel. This method is discussed in our User Guide section dedicated to clustering.

Kernels can also be used in classification settings. tslearn. svm offers implementations of Support Vector Machines
(SVM) that accept GAK as a kernel. This implementation heavily relies on scikit-learn and libsvm. One implica-
tion is that predict_proba and predict_log_proba methods are computed based on cross-validation probability
estimates, which has two main implications, as discussed in more details in scikit-learn’s user guide:

1

M. Cuturi. “Fast Global Alignment Kernels,” ICML 2011.

3 M. Cuturi, M. Blondel “Soft-DTW: a Differentiable Loss Function for Time-Series,” ICML 2017.
2 1. S. Dhillon, Y. Guan & B. Kulis. “Kernel k-means, Spectral Clustering and Normalized Cuts,” KDD 2004.

26 Chapter 2. User Guide

https://scikit-learn.org/stable/modules/svm.html#scores-probabilities

tslearn Documentation, Release 0.6.3

1. setting the constructor option probability to True makes the fit step longer since it then relies on an expensive
five-fold cross-validation;

2. the probability estimates obtained through predict_proba may be inconsistent with the scores provided by
decision_function and the predicted class output by predict.

2.3.3 Examples Using Kernel Methods

e SVM and GAK

e Kernel k-means

2.3.4 References

2.4 Time Series Clustering

Clustering is the task of grouping together similar objects. This task hence heavily relies on the notion of similarity
one relies on.

The following Figure illustrates why choosing an adequate similarity function is key (code to reproduce is available in
the Gallery of Examples).

Fig. 5: k-means clustering with Euclidean distance. Each subfigure represents series from a given cluster and their
centroid (in red).

This Figure is the result of a k-means clustering that uses Euclidean distance as a base metric. One issue with this
metric is that it is not invariant to time shifts, while the dataset at stake clearly holds such invariants.

2.4.1 k-means and Dynamic Time Warping

To overcome the previously illustrated issue, distance metrics dedicated to time series, such as Dynamic Time Warping
(DTW), are required. As can be seen in the Figure below, the use of such metrics produce more meaningful results.

The tslearn.clustering modulein tslearn offers an option to use DTW as the core metric in a k-means algorithm,
which leads to better clusters and centroids:

Fig. 6: k-means clustering with Dynamic Time Warping. Each subfigure represents series from a given cluster and
their centroid (in red).

First, clusters gather time series of similar shapes, which is due to the ability of Dynamic Time Warping (DTW) to
deal with time shifts, as explained above. Second, cluster centers (aka centroids) are computed as the barycenters with
respect to DTW, hence they allow to retrieve a sensible average shape whatever the temporal shifts in the cluster (see
our dedicated User Guide section for more details on how these barycenters are computed).

In tslearn, clustering a time series dataset with k-means and a dedicated time series metric is as easy as

from tslearn.clustering import TimeSeriesKMeans

model = TimeSeriesKMeans(n_clusters=3, metric="dtw",
max_iter=10, random_state=seed)
model . fit (X_train)

2.4. Time Series Clustering 27

tslearn Documentation, Release 0.6.3

where X_train is the considered unlabelled dataset of time series. The metric parameter can also be setto "softdtw"
as an alternative time series metric (cf. our User Guide section on soft-DTW).

2.4.2 Kernel k.-means and Time Series Kernels

Another option to deal with such time shifts is to rely on the kernel trick. Indeed,' introduces a positive semidefinite
kernel for time series, inspired from DTW. Then, the kernel k-means algorithm?, that is equivalent to a k-means that
would operate in the Reproducing Kernel Hilbert Space associated to the chosen kernel, can be used:

Fig. 7: Kernel k-means clustering with Global Alignment Kernel. Each subfigure represents series from a given cluster.
A first significant difference (when compared to k-means) is that cluster centers are never computed explicitly, hence
time series assignments to cluster are the only kind of information available once the clustering is performed.

Second, one should note that the clusters generated by kernel-k-means are phase dependent (see clusters 2 and 3
that differ in phase rather than in shape). This is because Global Alignment Kernel is not invariant to time shifts, as
demonstrated in® for the closely related soft-DTW*.

2.4.3 Examples Using Clustering Estimators

* k-means

o Kernel k-means

2.4.4 References

2.5 Shapelets

Shapelets are defined in' as “subsequences that are in some sense maximally representative of a class”. Informally,

if we assume a binary classification setting, a shapelet is discriminant if it is present in most series of one class and
absent from series of the other class. To assess the level of presence, one uses shapelet matches:

A(x,8) = min x5~ 5]

where L is the length (number of timestamps) of shapelet s and x;_,; 1, is the subsequence extracted from time series
x that starts at time index ¢ and stops at ¢ + L. If the above-defined distance is small enough, then shapelet s is supposed
to be present in time series x.

Fig. 8: The distance from a time series to a shapelet is done by sliding the shorter shapelet over the longer time series
and calculating the point-wise distances. The minimal distance found is returned.

In a classification setting, the goal is then to find the most discriminant shapelets given some labeled time series data.
Shapelets can be mined from the training set”2° 2% ! or learned using gradient-descent.

1

M. Cuturi. “Fast Global Alignment Kernels,” ICML 2011.

2 1. S. Dhillon, Y. Guan & B. Kulis. “Kernel k-means, Spectral Clustering and Normalized Cuts,” KDD 2004.

3 H. Janati, M. Cuturi, A. Gramfort. “Spatio-Temporal Alignments: Optimal transport through space and time,” AISTATS 2020
4 M. Cuturi, M. Blondel “Soft-DTW: a Differentiable Loss Function for Time-Series,” ICML 2017.

I'L. Ye & E. Keogh. Time series shapelets: a new primitive for data mining. SIGKDD 2009.

28 Chapter 2. User Guide

tslearn Documentation, Release 0.6.3

2.5.1 Learning Time-series Shapelets

tslearn provides an implementation of “Learning Time-series Shapelets”, introduced in’, that is an instance of the
latter category. In Learning Shapelets, shapelets are learned such that time series represented in their shapelet-transform
space (i.e. their distances to each of the shapelets) are linearly separable. A shapelet-transform representation of a time
series x given a set of shapelets {s; }i<y is the feature vector: [d(x,s1), -+ ,d(x,sg)]. This is illustrated below with a
two-dimensional example.

Fig. 9: An example of how time series are transformed into linearly separable distances.

In tslearn, in order to learn shapelets and transform timeseries to their corresponding shapelet-transform space, the
following code can be used:

from tslearn.shapelets import LearningShapelets

model = LearningShapelets(n_shapelets_per_size={3: 2})
model . fit(X_train, y_train)

train_distances = model.transform(X_train)
test_distances = model.transform(X_test)

shapelets = model.shapelets_as_time_series_

A tslearn.shapelets.LearningShapelets model has several hyper-parameters, such as the maximum number
of iterations and the batch size. One important hyper-parameters is the n_shapelets_per_size which is a dictionary
where the keys correspond to the desired lengths of the shapelets and the values to the desired number of shapelets per
length. When set to None, this dictionary will be determined by a heuristic. After creating the model, we can fit the
optimal shapelets using our training data. After a fitting phase, the distances can be calculated using the transform
function. Moreover, you can easily access the learned shapelets by using the shapelets_as_time_series_ attribute.

It is important to note that due to the fact that a technique based on gradient-descent is used to learn the shapelets,
our model can be prone to numerical issues (e.g. exploding and vanishing gradients). For that reason, it is important
to normalize your data. This can be done before passing the data to the fit and transform methods, by using
our tslearn.preprocessing module but this can be done internally by the algorithm itself by setting the scale
parameter.

2.5.2 Examples Involving Shapelet-based Estimators

* Learning Shapelets
o Aligning discovered shapelets with timeseries

* Learning Shapelets: decision boundaries in 2D distance space

2

J. Grabocka et al. Learning Time-Series Shapelets. SIGKDD 2014.

2.5. Shapelets 29

tslearn Documentation, Release 0.6.3

2.5.3 References
2.6 Matrix Profile

The Matrix Profile, M P, is a new time series that can be calculated based on an input time series 7" and a subsequence
length m. M P; corresponds to the minimal distance from the query subsequence 7;_,; ., to any subsequence in T"'.
As the distance from the query subsequence to itself will be equal to zero, T;_ = _,; = is considered as an exclusion
zone. In order to construct the Matrix Profile, a distance profile which is similar to the distance calculation used to
transform time series into their shapelet-transform space, is calculated for each subsequence, as illustrated below:

Fig. 10: For each segment, the distances to all subsequences of the time series are calculated and the minimal distance
that does not correspond to the original location of the segment (where the distance is zero) is returned.

2.6.1 Implementation

The Matrix Profile implementation provided in tslearn uses numpy or wraps around STUMPY?. Three different
versions are available:

* numpy: a slow implementation
* stump: a fast CPU version, which requires STUMPY to be installed
e gpu_stump: the fastest version, which requires STUMPY to be installed and a GPU

2.6.2 Possible Applications

The Matrix Profile allows for many possible applications, which are well documented on the page created by the original
authors®. Some of these applications include: motif and shapelet extraction, discord detection, earthquake detection,
and many more.

2.6.3 Examples Involving Matrix Profile

* Matrix Profile

* Distance and Matrix Profiles

2.6.4 References

2.7 Early Classification of Time Series

Early classification of time series is the task of performing a classification as early as possible for an incoming time
series, and decision about when to trigger the decision is part of the prediction process.

1'C. M. Yeh, Y. Zhu, L. Ulanova, N.Begum et al. Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes
Motifs, Discords and Shapelets. ICDM 2016.

2 https://github.com/TDAmeritrade/stumpy

3 https://www.cs.ucr.edu/~eamonn/MatrixProfile. html

30 Chapter 2. User Guide

https://github.com/TDAmeritrade/stumpy
https://www.cs.ucr.edu/~eamonn/MatrixProfile.html

tslearn Documentation, Release 0.6.3

2.7.1 Early Classification Cost Function

Dachraoui et al." introduces a composite loss function for early classification of time series that balances earliness and
accuracy.

The cost function is of the following form:
‘C(X—>t7 Y, t, 0) = ‘CC(X—>t7 Y, 0) +at

where L.(-,-,-) is a classification loss and ¢ is the time at which a decision is triggered by the system (x_,; is time
series x observed up to time ¢). In this setting, « drives the tradeoff between accuracy and earliness and is supposed to
be a hyper-parameter of the method.

The authors rely on (i) a clustering of the training time series and (ii) individual classifiers m;(-) trained at all possible
timestamps, so as to be able to predict, at time ¢, an expected cost for all future times ¢t 4+ 7 with 7 > 0:

Fr(sny) =Y [P(Crlxs) Y [Ply=1ilCk) [D Prar(@=jly=i,Cr) | | | +at
k i j#i

where:
o P(Ck|x¢) is a soft-assignment weight of x_,; to cluster C;

» P(y =i|C}) is obtained from a contingency table that stores the number of training time series of each class in
each cluster;

e Poir (4 = jly = i,Cy) is obtained through training time confusion matrices built on time series from cluster
C'k, using classifier m.-(+).

At test time, if a series is observed up to time ¢ and if, for all positive 7 we have f.(x_:,y) > fo(x-¢,y), then a
decision is made using classifier m;(-).

Fig. 11: Early classification. At test time, prediction is made at a timestamp such that the expected earliness-accuracy
is optimized, which can hence vary between time series.

To wuse this early classifier in tslearn, one can rely on the tslearn.early_classification.
NonMyopicEarlyClassifier class:

from tslearn.early_classification import NonMyopicEarlyClassifier

early_clf = NonMyopicEarlyClassifier(n_clusters=3,
cost_time_parameter=1le-3,
lamb=1e2,
random_state=0)

early_clf.fit(X_train, y_train)

preds, times = early_clf.predict_class_and_earliness(X_test)

where cost_time_parameter is the a parameter presented above and lamb is a trade-off parameter for the soft-
assignment of partial series to clusters P(Cy|x_¢) (when lamb tends to infinity, the assignment tends to hard-
assignment, and when lamb is set to 0, equal probabilities are obtained for all clusters).

I A. Dachraoui, A. Bondu and A. Cornuejols. “Early classification of time series as a non myopic sequential decision making problem,”
ECML/PKDD 2015

2.7. Early Classification of Time Series 31

tslearn Documentation, Release 0.6.3

2.7.2 Examples Involving Early Classification Estimators

 Early Classification

2.7.3 References

32 Chapter 2. User Guide

CHAPTER
THREE

API REFERENCE

The complete tslearn project is automatically documented for every module.

tslearn.

tslearn

tslearn.

tslearn.

tslearn.

tslearn

tslearn.

tslearn.

tslearn.

tslearn.

tslearn.

tslearn

tslearn.

tslearn.

barycenters

.clustering

datasets
early_classification

generators

.matrix_profile

metrics

neural_network

neighbors
piecewise

preprocessing

.Shapelets

svm

utils

The tslearn.barycenters module gathers algo-
rithms for time series barycenter computation.

The tslearn.clustering module gathers time series
specific clustering algorithms.

The tslearn.datasets module provides simplified
access to standard time series datasets.

The tslearn.early_classification module gath-
ers early classifiers for time series.

The tslearn.generators module gathers synthetic
time series dataset generation routines.

The tslearn.matrix_profile module gathers meth-
ods for the computation of Matrix Profiles from time se-
ries.

The tslearn.metrics module delivers time-series
specific metrics to be used at the core of machine learn-
ing algorithms.

The tslearn.neural_network module contains
multi-layer perceptron models for time series classifica-
tion and regression.

The tslearn.neighbors module gathers nearest
neighbor algorithms using time series metrics.

The tslearn.piecewise module gathers time series
piecewise approximation algorithms.

The tslearn.preprocessing module gathers time se-
ries scalers and resamplers.

The tslearn.shapelets module gathers Shapelet-
based algorithms.

The tslearn.svm module contains Support Vector
Classifier (SVC) and Support Vector Regressor (SVR)
models for time series.

The tslearn.utils module includes various utilities.

33

tslearn Documentation, Release 0.6.3

3.1 tslearn.barycenters

The tslearn.barycenters module gathers algorithms for time series barycenter computation.

A barycenter (or Fréchet mean) is a time series b which minimizes the sum of squared distances to the time series of a
given data set x:

Ininz d(b, z;)*

Only the methods dtw_barycenter_averaging() and softdtw_barycenter() can operate on variable-length
time-series (see here).

See the barycenter examples for an overview.

Functions
euclidean_barycenter(X[, weights]) Standard Euclidean barycenter computed from a set of
time series.
dtw_barycenter_averaging(X|, ...]) DTW Barycenter Averaging (DBA) method estimated

through Expectation-Maximization algorithm.
dtw_barycenter_averaging_subgradient(X[,...]) DTW Barycenter Averaging (DBA) method estimated
through subgradient descent algorithm.
softdtw_barycenter(X[, gamma, weights, ...]) Compute barycenter (time series averaging) under the
soft-DTW [1] geometry.

3.1.1 tslearn.barycenters.euclidean_barycenter

tslearn.barycenters.euclidean_barycenter (X, weights=None)

Standard Euclidean barycenter computed from a set of time series.
Parameters

X
[array-like, shape=(n_ts, sz, d)] Time series dataset.

weights: None or array
Weights of each X[i]. Must be the same size as len(X). If None, uniform weights are used.

Returns

numpy.array of shape (sz, d)
Barycenter of the provided time series dataset.

Notes

This method requires a dataset of equal-sized time series

34 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

Examples

>>> time_series = [[1, 2, 3, 4], [1, 2, 4, 5]1]
>>> bar = euclidean_barycenter(time_series)
>>> bar.shape
(4, D
>>> bar
array([[1.],

Zs g

[3.5],

[4.51D)

Examples using tslearn.barycenters.euclidean_barycenter

* Barycenters

3.1.2 tslearn.barycenters.dtw_barycenter_averaging

tslearn.barycenters.dtw_barycenter_averaging (X, barycenter_size=None, init_barycenter=None,
max_iter=30, tol=1e-05, weights=None,
metric_params=None, verbose=False, n_init=1)

DTW Barycenter Averaging (DBA) method estimated through Expectation-Maximization algorithm.

DBA was originally presented in [1]. This implementation is based on a idea from [2] (Majorize-Minimize Mean
Algorithm).

Parameters

X
[array-like, shape=(n_ts, sz, d)] Time series dataset.

barycenter_size
[int or None (default: None)] Size of the barycenter to generate. If None, the size of the
barycenter is that of the data provided at fit time or that of the initial barycenter if specified.

init_barycenter
[array or None (default: None)] Initial barycenter to start from for the optimization process.

max_iter
[int (default: 30)] Number of iterations of the Expectation-Maximization optimization pro-
cedure.

tol
[float (default: 1e-5)] Tolerance to use for early stopping: if the decrease in cost is lower than
this value, the Expectation-Maximization procedure stops.

weights: None or array
Weights of each X[i]. Must be the same size as len(X). If None, uniform weights are used.

metric_params: dict or None (default: None)
DTW constraint parameters to be used. See rslearn.metrics.dtw_path for a list of accepted
parameters If None, no constraint is used for DTW computations.

verbose
[boolean (default: False)] Whether to print information about the cost at each iteration or
not.

3.1. tslearn.barycenters 35

tslearn Documentation, Release 0.6.3

n_init
[int (default: 1)] Number of different initializations to be tried (useful only is init_barycenter
is set to None, otherwise, all trials will reach the same performance)

Returns

numpy.array of shape (barycenter_size, d) or (sz, d) if barycenter_size is None
DBA barycenter of the provided time series dataset.

References

(11, [2]

Examples

>>> time_series = [[1, 2, 3, 4], [1, 2, 4, 5]1]
>>> dtw_barycenter_averaging(time_series, max_iter=5)
array([[1. 1,

2o 1

[3.5],

[4.51D
>>> time_series = [[1, 2, 3, 4], [1, 2, 3, 4, 5]]
>>> dtw_barycenter_averaging(time_series, max_iter=5)
array([[1. 1,

(2. 1,
(3. 1,
(4. 1,
[4.51D

>>> dtw_barycenter_averaging(time_series, max_iter=5,
- metric_params={"itakura_max_slope": 2})
array([[1.],
[Zs g
3 Jg
[3.5],
[4.511)
>>> dtw_barycenter_averaging(time_series, max_iter=5, barycenter_size=3)
array([[1.5 1,
[3. 1,
[4.33333333]11)
>>> dtw_barycenter_averaging([[0, O, 0], [10, 10, 10]], max_iter=1,
- weights=numpy.array([0.75, 0.25]))
array([[2.5],
[2.5],
[2.511)

36 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

Examples using tslearn.barycenters.dtw_barycenter_averaging

e Barycenters

3.1.3 tslearn.barycenters.dtw_barycenter_averaging_subgradient

tslearn.barycenters.dtw_barycenter_averaging_subgradient (X, barycenter_size=None,
init_barycenter=None, max_iter=30,
initial_step_size=0.05,
final_step_size=0.005, tol=1e-05,
random_state=None, weights=None,
metric_params=None, verbose=False)

DTW Barycenter Averaging (DBA) method estimated through subgradient descent algorithm.

DBA was originally presented in [1]. This implementation is based on a idea from [2] (Stochastic Subgradient
Mean Algorithm).

Parameters

X
[array-like, shape=(n_ts, sz, d)] Time series dataset.

barycenter_size
[int or None (default: None)] Size of the barycenter to generate. If None, the size of the
barycenter is that of the data provided at fit time or that of the initial barycenter if specified.

init_barycenter
[array or None (default: None)] Initial barycenter to start from for the optimization process.

max_iter
[int (default: 30)] Number of iterations of the Expectation-Maximization optimization pro-
cedure.

initial_step_size
[float (default: 0.05)] Initial step size for the subgradient descent algorithm. Default value is
the one suggested in [2].

final_step_size
[float (default: 0.005)] Final step size for the subgradient descent algorithm. Default value
is the one suggested in [2].

tol
[float (default: 1e-5)] Tolerance to use for early stopping: if the decrease in cost is lower than
this value, the Expectation-Maximization procedure stops.

random_state
[int, RandomState instance or None, optional (default=None)] If int, random_state is the seed
used by the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance used
by np.random.

weights: None or array
Weights of each X[i]. Must be the same size as len(X). If None, uniform weights are used.

metric_params: dict or None (default: None)
DTW constraint parameters to be used. See tslearn.metrics.dtw_path for a list of accepted
parameters If None, no constraint is used for DTW computations.

3.1. tslearn.barycenters 37

tslearn Documentation, Release 0.6.3

verbose
[boolean (default: False)] Whether to print information about the cost at each iteration or
not.

Returns

numpy.array of shape (barycenter_size, d) or (sz, d) if barycenter_size is None
DBA barycenter of the provided time series dataset.

References

(11, [2]

Examples

>>> time_series = [[1, 2, 3, 4], [1, 2, 4, 5]1]
>>> dtw_barycenter_averaging_subgradient (
time_series,

max_iter=10,

random_state=0

<)

array([[1.],
Zo g
[3.5...1,
[4.5...1D)

Examples using tslearn.barycenters.dtw_barycenter_averaging_subgradient

° B[H‘}'CEHT@VS

3.1.4 tslearn.barycenters.softdtw_barycenter

tslearn.barycenters.softdtw_barycenter (X, gamma=1.0, weights=None, method="L-BFGS-B’, tol=0.001,
max_iter=>50, init=None)

Compute barycenter (time series averaging) under the soft-DTW [1] geometry.
Soft-DTW was originally presented in [1].
Parameters

X
[array-like, shape=(n_ts, sz, d)] Time series dataset.

gamma: float
Regularization parameter. Lower is less smoothed (closer to true DTW).

weights: None or array
Weights of each X[i]. Must be the same size as len(X). If None, uniform weights are used.

method: string
Optimization method, passed to scipy.optimize.minimize. Default: L-BFGS.

tol: float
Tolerance of the method used.

38 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

max_iter: int
Maximum number of iterations.

init: array or None (default: None)
Initial barycenter to start from for the optimization process. If None, euclidean barycenter is
used as a starting point.

Returns

numpy.array of shape (bsz, d) where bsz is the size of the init array if provided or sz

otherwise
Soft-DTW barycenter of the provided time series dataset.

References

(1]

Examples

>>> time_series = [[1, 2, 3, 4], [1, 2, 4, 5]1]
>>> softdtw_barycenter(time_series, max_iter=5)
array([[1.25161574],

[2.03821705],

[3.5101956],

[4.36140605]])
>>> time_series = [[1, 2, 3, 41, [1, 2, 3, 4, 5]1]
>>> softdtw_barycenter(time_series, max_iter=5)
array([[1.21349933],

[1.8932251],

[2.67573269],

[3.51057026],

[4.33645802]])

Examples using tslearn.barycenters.softdtw_barycenter

* Barycenters

* Soft-DTW weighted barycenters

3.2 tslearn.clustering

The tslearn.clustering module gathers time series specific clustering algorithms.

User guide: See the Clustering section for further
details.

3.2. tslearn.clustering 39

tslearn Documentation, Release 0.6.3

Classes
KernelKMeans([n_clusters, kernel, max_iter, ...]) Kernel K-means.
KShape([n_clusters, max_iter, tol, n_init, ...]) KShape clustering for time series.
TimeSeriesKMeans([n_clusters, max_iter, ...]) K-means clustering for time-series data.

3.2.1 tslearn.clustering.KernelKMeans

class tslearn.clustering.KernelKMeans (n_clusters=3, kernel="'gak', max_iter=>50, tol=1e-06, n_init=1,
kernel_params=None, n_jobs=None, verbose=0,
random_state=None)

Kernel K-means.
Parameters

n_clusters
[int (default: 3)] Number of clusters to form.

kernel
[string, or callable (default: “gak’)] The kernel should either be “gak™, in which case the
Global Alignment Kernel from [2] is used or a value that is accepted as a metric by scikit-
learn’s pairwise_kernels

max_iter
[int (default: 50)] Maximum number of iterations of the k-means algorithm for a single run.

tol
[float (default: 1e-6)] Inertia variation threshold. If at some point, inertia varies less than
this threshold between two consecutive iterations, the model is considered to have converged
and the algorithm stops.

n_init
[int (default: 1)] Number of time the k-means algorithm will be run with different centroid
seeds. The final results will be the best output of n_init consecutive runs in terms of inertia.

kernel_params
[dict or None (default: None)] Kernel parameters to be passed to the kernel function. None
means no kernel parameter is set. For Global Alignment Kernel, the only parameter of in-
terest is sigma. If set to ‘auto’, it is computed based on a sampling of the training set (cf
tslearn.metrics.sigma_gak). If no specific value is set for sigma, its defaults to 1.

n_jobs
[int or None, optional (default=None)] The number of jobs to run in parallel for GAK cross-
similarity matrix computations. None means 1 unless in a joblib.parallel_backend
context. -1 means using all processors. See scikit-learns’ Glossary for more details.

verbose
[int (default: 0)] If nonzero, joblib progress messages are printed.

random_state
[integer or numpy.RandomState, optional] Generator used to initialize the centers. If an
integer is given, it fixes the seed. Defaults to the global numpy random number generator.

Attributes

labels_
[numpy.ndarray] Labels of each point

40 Chapter 3. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_kernels.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_kernels.html
https://scikit-learn.org/stable/glossary.html#term-n-jobs

tslearn Documentation, Release 0.6.3

inertia_

[float] Sum of distances of samples to their closest cluster center (computed using the kernel

trick).

sample_weight_

[numpy.ndarray] The weight given to each sample from the data provided to fit.

n_iter_

[int] The number of iterations performed during fit.

Notes

The training data are saved to disk if this model is serialized and may result in a large model file if the training

dataset is large.

References

(11, [2]

Examples

>>> from tslearn.generators import random_walks

>>> X = random_walks(n_ts=50, sz=32, d=1)

>>> gak_km = KernelKMeans(n_clusters=3, kernel="gak", random_state=0)

>>> gak_km. fit(X)
KernelKMeans(...)

>>> print (numpy.unique(gak_km.labels_))

[0 1 2]

Methods

fit(X[, y, sample_weight])
fit_predict(X[, y])

from_hdf5(path)
from_json(path)
from_pickle(path)
get_metadata_routing()
get_params([deep])
predict(X)

set_fit_request(*[, sample_weight])
set_params(**params)

to_hdf5(path)

to_json(path)

to_pickle(path)

Compute kernel k-means clustering.

Fit kernel k-means clustering using X and then predict
the closest cluster each time series in X belongs to.
Load model from a HDFS file.

Load model from a JSON file.

Load model from a pickle file.

Get metadata routing of this object.

Get parameters for this estimator.

Predict the closest cluster each time series in X be-
longs to.

Request metadata passed to the £it method.

Set the parameters of this estimator.

Save model to a HDFS file.

Save model to a JSON file.

Save model to a pickle file.

fit (X, y=None, sample_weight=None)
Compute kernel k-means clustering.

3.2. tslearn.clustering

41

tslearn Documentation, Release 0.6.3

Parameters

X
[array-like of shape=(n_ts, sz, d)] Time series dataset.

y
Ignored

sample_weight
[array-like of shape=(n_ts,) or None (default: None)] Weights to be given to time series in
the learning process. By default, all time series weights are equal.

fit_predict (X, y=None)

Fit kernel k-means clustering using X and then predict the closest cluster each time series in X belongs to.
It is more efficient to use this method than to sequentially call fit and predict.
Parameters

X
[array-like of shape=(n_ts, sz, d)] Time series dataset to predict.

y
Ignored

Returns

labels
[array of shape=(n_ts,)] Index of the cluster each sample belongs to.

classmethod from_hdf5 (parh)
Load model from a HDFS5 file. Requires h5py http://docs.h5py.org/

Parameters

path
[str] Full path to file.

Returns
Model instance

classmethod from_json(path)
Load model from a JSON file.

Parameters

path
[str] Full path to file.

Returns
Model instance

classmethod from_pickle(path)
Load model from a pickle file.

Parameters

path
[str] Full path to file.

Returns

Model instance

42 Chapter 3. API Reference

http://docs.h5py.org/

tslearn Documentation, Release 0.6.3

get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.

Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params (deep=True)
Get parameters for this estimator.

Parameters

deep

[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

predict(X)
Predict the closest cluster each time series in X belongs to.

Parameters

X
[array-like of shape=(n_ts, sz, d)] Time series dataset to predict.

Returns

labels
[array of shape=(n_ts,)] Index of the cluster each sample belongs to.

set_fit_request (*, sample_weight: bool | None | str = 'SUNCHANGEDS$') — KernelKMeans
Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

* True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not
provided.

* False: metadata is not requested and the meta-estimator will not pass it to fit.
* None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

e str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

3.2.

tslearn.clustering 43

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

tslearn Documentation, Release 0.6.3

Parameters

sample_weight

[str, True, False, or None, default=sklearn.utils.metadata_routing. UNCHANGED] Meta-

data routing for sample_weight parameter in fit.
Returns
self
[object] The updated object.

set_params (**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a

nested object.
Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

to_hdf5 (path)
Save model to a HDF? file. Requires h5py http://docs.h5py.org/

Parameters

path
[str] Full file path. File must not already exist.

Raises

FileExistsError
If a file with the same path already exists.

to_json(path)
Save model to a JSON file.

Parameters

path
[str] Full file path.

to_pickle(path)
Save model to a pickle file.

Parameters

path
[str] Full file path.

44

Chapter 3. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
http://docs.h5py.org/

tslearn Documentation, Release 0.6.3

Examples using tslearn.clustering.KernelKMeans

e Kernel k-means

3.2.2 tslearn.clustering.KShape

class tslearn.clustering.KShape (n_clusters=3, max_iter=100, tol=1e-06, n_init=1, verbose=Fualse,
random_state=None, init="random")

KShape clustering for time series.
KShape was originally presented in [1].
Parameters

n_clusters
[int (default: 3)] Number of clusters to form.

max_iter
[int (default: 100)] Maximum number of iterations of the k-Shape algorithm.

tol
[float (default: 1e-6)] Inertia variation threshold. If at some point, inertia varies less than
this threshold between two consecutive iterations, the model is considered to have converged
and the algorithm stops.

n_init
[int (default: 1)] Number of time the k-Shape algorithm will be run with different centroid
seeds. The final results will be the best output of n_init consecutive runs in terms of inertia.

verbose
[bool (default: False)] Whether or not to print information about the inertia while learning
the model.

random_state
[integer or numpy.RandomState, optional] Generator used to initialize the centers. If an
integer is given, it fixes the seed. Defaults to the global numpy random number generator.
init
[{ ‘random’ or ndarray} (default: ‘random’)] Method for initialization. ‘random’: choose k
observations (rows) at random from data for the initial centroids. If an ndarray is passed, it
should be of shape (n_clusters, ts_size, d) and gives the initial centers.

Attributes

cluster_centers_
[numpy.ndarray of shape (sz, d).] Centroids

labels_
[numpy.ndarray of integers with shape (n_ts,).] Labels of each point

inertia_
[float] Sum of distances of samples to their closest cluster center.

n_iter_
[int] The number of iterations performed during fit.

3.2. tslearn.clustering 45

tslearn Documentation, Release 0.6.3

Notes

This method requires a dataset of equal-sized time series.

References

(1]

Examples

>>> from tslearn.generators import random_walks

>>> X = random_walks(n_ts=50, sz=32, d=1)

>>> X = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X)
>>> ks = KShape(n_clusters=3, n_init=1, random_state=0).fit(X)

>>> ks.cluster_centers_.shape

3, 32, D

Methods

fit(X[, yD
fit_predict(X[, y])

from_hdf5(path)
from_json(path)
from_pickle(path)
get_metadata_routing()
get_params([deep])
predict(X)

set_params(**params)
to_hdf5(path)
to_json(path)
to_pickle(path)

Compute k-Shape clustering.

Fit k-Shape clustering using X and then predict the
closest cluster each time series in X belongs to.
Load model from a HDFS5 file.

Load model from a JSON file.

Load model from a pickle file.

Get metadata routing of this object.

Get parameters for this estimator.

Predict the closest cluster each time series in X be-
longs to.

Set the parameters of this estimator.

Save model to a HDF? file.

Save model to a JSON file.

Save model to a pickle file.

fit (X, y=None)

Compute k-Shape clustering.

Parameters

X

[array-like of shape=(n_ts, sz, d)] Time series dataset.

y
Ignored

fit_predict (X, y=None)

Fit k-Shape clustering using X and then predict the closest cluster each time series in X belongs to.

It is more efficient to use this method than to sequentially call fit and predict.

Parameters

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

X
[array-like of shape=(n_ts, sz, d)] Time series dataset to predict.

y
Ignored

Returns

labels
[array of shape=(n_ts,)] Index of the cluster each sample belongs to.

classmethod from_hdf5 (parh)
Load model from a HDFS file. Requires h5py http://docs.h5py.org/

Parameters

path
[str] Full path to file.

Returns
Model instance

classmethod from_json(path)
Load model from a JSON file.

Parameters

path
[str] Full path to file.

Returns
Model instance

classmethod from_pickle(path)

Load model from a pickle file.
Parameters

path
[str] Full path to file.

Returns
Model instance

get_metadata_routing()
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.
Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params (deep=True)
Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

3.2. tslearn.clustering 47

http://docs.h5py.org/
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

tslearn Documentation, Release 0.6.3

Returns

params

[dict] Parameter names mapped to their values.

predict(X)

Predict the closest cluster each time series in X belongs to.

Parameters

X

[array-like of shape=(n_ts, sz, d)] Time series dataset to predict.

Returns

labels

[array of shape=(n_ts,)] Index of the cluster each sample belongs to.

set_params (**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a

nested object.
Parameters

**params

[dict] Estimator parameters.

Returns

self

[estimator instance] Estimator instance.

to_hdf5 (path)

Save model to a HDFS file. Requires h5py http://docs.hSpy.org/

Parameters

path

[str] Full file path. File must not already exist.

Raises

FileExistsError

If a file with the same path already exists.

to_json(path)
Save model to a JSON file.

Parameters

path
[str] Full file path.

to_pickle(path)
Save model to a pickle file.

Parameters

path
[str] Full file path.

48

Chapter 3

. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
http://docs.h5py.org/

tslearn Documentation, Release 0.6.3

Examples using tslearn.clustering.KShape

* KShape

e Model Persistence

3.2.3 tslearn.clustering.TimeSeriesKMeans

class tslearn.clustering.TimeSeriesKMeans (n_clusters=3, max_iter=>50, tol=1e-06, n_init=1,

metric="euclidean', max_iter_barycenter=100,
metric_params=None, n_jobs=None, dtw_inertia=False,
verbose=0, random_state=None, init="k-means++")

K-means clustering for time-series data.

Parameters

n_clusters
[int (default: 3)] Number of clusters to form.

max_iter
[int (default: 50)] Maximum number of iterations of the k-means algorithm for a single run.

tol
[float (default: 1e-6)] Inertia variation threshold. If at some point, inertia varies less than
this threshold between two consecutive iterations, the model is considered to have converged
and the algorithm stops.
n_init
[int (default: 1)] Number of time the k-means algorithm will be run with different centroid
seeds. The final results will be the best output of n_init consecutive runs in terms of inertia.
metric

[{“euclidean”, “dtw”, “softdtw”} (default: “euclidean’)] Metric to be used for both cluster
assignment and barycenter computation. If “dtw”, DBA is used for barycenter computation.

max_iter_barycenter
[int (default: 100)] Number of iterations for the barycenter computation process. Only used
if metric=""dtw” or metric="softdtw”.

metric_params
[dict or None (default: None)] Parameter values for the chosen metric. For metrics that
accept parallelization of the cross-distance matrix computations, n_jobs key passed in met-
ric_params is overridden by the n_jobs argument.

n_jobs
[int or None, optional (default=None)] The number of jobs to run in parallel for cross-
distance matrix computations. Ignored if the cross-distance matrix cannot be computed using
parallelization. None means 1 unless in a joblib.parallel_backend context. -1 means
using all processors. See scikit-learns’ Glossary for more details.

dtw_inertia: bool (default: False)
Whether to compute DTW inertia even if DTW is not the chosen metric.

verbose
[int (default: 0)] If nonzero, print information about the inertia while learning the model and
joblib progress messages are printed.

3.2. tslearn.clustering

49

https://scikit-learn.org/stable/glossary.html#term-n-jobs

tslearn Documentation, Release 0.6.3

random_state
[integer or numpy.RandomState, optional] Generator used to initialize the centers. If an
integer is given, it fixes the seed. Defaults to the global numpy random number generator.
init
[{ ‘k-means++’, ‘random’ or an ndarray} (default: ‘k-means++)] Method for initialization:
‘k-means++’ : use k-means++ heuristic. See scikit-learn’s k_init_ for more. ‘random’:
choose k observations (rows) at random from data for the initial centroids. If an ndarray
is passed, it should be of shape (n_clusters, ts_size, d) and gives the initial centers.

Attributes

labels_
[numpy.ndarray] Labels of each point.

cluster_centers_
[numpy.ndarray of shape (n_clusters, sz, d)] Cluster centers. sz is the size of the time series
used at fit time if the init method is ‘k-means++’ or ‘random’, and the size of the longest
initial centroid if those are provided as a numpy array through init parameter.

inertia_
[float] Sum of distances of samples to their closest cluster center.

n_iter_
[int] The number of iterations performed during fit.

Notes

If metric is set to “euclidean”, the algorithm expects a dataset of equal-sized time series.

Examples

>>>
>>>
>>>

>>>
(3 ’
>>>

>>>
(3 1
>>>

>>>
(3 1
>>>

>>>

from tslearn.generators import random_walks
X = random_walks(n_ts=50, sz=32, d=1)
km = TimeSeriesKMeans(n_clusters=3, metric="euclidean", max_iter=5,
random_state=0) .fit(X)
km.cluster_centers_.shape
32, 1
km_dba = TimeSeriesKMeans(n_clusters=3, metric="dtw", max_iter=5,
max_iter_barycenter=5,
random_state=0).fit(X)
km_dba.cluster_centers_.shape
32, 1)
km_sdtw = TimeSeriesKMeans(n_clusters=3, metric="softdtw", max_iter=5,
max_iter_barycenter=5,
metric_params={"gamma": .5},
random_state=0).fit(X)
km_sdtw.cluster_centers_.shape
32, 1
X_bis = to_time_series_dataset([[1, 2, 3, 4],
(1, 2, 31,
[2, 5, 6, 7, 8, 91D
km = TimeSeriesKMeans(n_clusters=2, max_iter=5,
metric="dtw", random_state=0).fit(X_bis)
(continues on next page)

50

Chapter 3. API Reference

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/cluster/k_means_.py

tslearn Documentation, Release 0.6.3

>>> km.cluster_centers_.shape
@, 6, 1

Methods

(continued from previous page)

fit(X[, y)
fit_predict(X[, y])

fit_transform(X[, y])
from_hdf5(path)
from_json(path)
from_pickle(path)
get_metadata_routing()
get_params([deep])
predict(X)

set_output(*[, transform])
set_params(**params)
to_hdf5(path)
to_json(path)
to_pickle(path)
transform(X)

Compute k-means clustering.

Fit k-means clustering using X and then predict the
closest cluster each time series in X belongs to.

Fit to data, then transform it.

Load model from a HDFS file.

Load model from a JSON file.

Load model from a pickle file.

Get metadata routing of this object.

Get parameters for this estimator.

Predict the closest cluster each time series in X be-
longs to.

Set output container.

Set the parameters of this estimator.

Save model to a HDFS file.

Save model to a JSON file.

Save model to a pickle file.

Transform X to a cluster-distance space.

fit (X, y=None)
Compute k-means clustering.

Parameters

X

[array-like of shape=(n_ts, sz, d)] Time series dataset.

y
Ignored

fit_predict (X, y=None)

Fit k-means clustering using X and then predict the closest cluster each time series in X belongs to.

It is more efficient to use this method than to sequentially call fit and predict.

Parameters

X

[array-like of shape=(n_ts, sz, d)] Time series dataset to predict.

y
Ignored

Returns

labels

[array of shape=(n_ts,)] Index of the cluster each sample belongs to.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

3.2. tslearn.clustering

51

tslearn Documentation, Release 0.6.3

Parameters

X
[array-like of shape (n_samples, n_features)] Input samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] Target values

(None for unsupervised transformations).

**it_params
[dict] Additional fit parameters.

Returns

X_new
[ndarray array of shape (n_samples, n_features_new)] Transformed array.

classmethod from_hdf5 (parh)
Load model from a HDFS file. Requires h5py http://docs.h5py.org/

Parameters

path
[str] Full path to file.

Returns
Model instance

classmethod from_json(path)
Load model from a JSON file.

Parameters

path
[str] Full path to file.

Returns
Model instance

classmethod from_pickle(path)

Load model from a pickle file.
Parameters

path
[str] Full path to file.

Returns
Model instance

get_metadata_routing()
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.
Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

52 Chapter 3. API Reference

http://docs.h5py.org/
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

tslearn Documentation, Release 0.6.3

get_params (deep=True)

Get parameters for this estimator.
Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and contained

subobjects that are estimators.
Returns

params
[dict] Parameter names mapped to their values.

predict (X)
Predict the closest cluster each time series in X belongs to.

Parameters

X
[array-like of shape=(n_ts, sz, d)] Time series dataset to predict.

Returns

labels
[array of shape=(n_ts,)] Index of the cluster each sample belongs to.

set_output (¥, transform=None)
Set output container.

See Introducing the set_output API for an example on how to use the API.
Parameters

transform
[{““default”, “pandas”}, default=None] Configure output of transform and fit_transform.

* “default”: Default output format of a transformer

* “pandas”: DataFrame output

* None: Transform configuration is unchanged
Returns

self
[estimator instance] Estimator instance.

set_params (**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

3.2. tslearn.clustering 53

https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

tslearn Documentation, Release 0.6.3

to_hdf5 (path)
Save model to a HDFS file. Requires h5py http://docs.hSpy.org/

Parameters

path
[str] Full file path. File must not already exist.

Raises

FileExistsError
If a file with the same path already exists.

to_json(path)
Save model to a JSON file.

Parameters

path
[str] Full file path.

to_pickle(path)
Save model to a pickle file.

Parameters

path
[str] Full file path.

transform(X)

Transform X to a cluster-distance space.
In the new space, each dimension is the distance to the cluster centers.
Parameters

X
[array-like of shape=(n_ts, sz, d)] Time series dataset

Returns

distances
[array of shape=(n_ts, n_clusters)] Distances to cluster centers

Examples using tslearn.clustering.TimeSeriesKMeans

* k-means

Functions

silhouette_score(X, labels[, metric, ...]) Compute the mean Silhouette Coefficient of all samples
(cf.

54 Chapter 3. API Reference

http://docs.h5py.org/

tslearn Documentation, Release 0.6.3

3.2.4 tslearn.clustering.silhouette_score

tslearn.clustering.silhouette_score (X, labels, metric=None, sample_size=None, metric_params=None,
n_jobs=None, verbose=0, random_state=None, **kwds)

Compute the mean Silhouette Coefficient of all samples (cf. [1] and [2]).

Read more in the scikit-learn documentation.

Parameters
X
[array [n_ts, n_ts] if metric == “precomputed”, or, [n_ts, sz, d] otherwise] Array of pairwise
distances between time series, or a time series dataset.
labels

[array, shape = [n_ts]] Predicted labels for each time series.

metric
[string, callable or None (default: None)] The metric to use when calculating distance be-
tween time series. Should be one of {‘dtw’, ‘softdtw’, ‘euclidean’} or a callable distance
function or None. If ‘softdtw’ is passed, a normalized version of Soft-DTW is used that is
defined as sdtw_(x,y) := sdtw(x,y) - 1/2(sdtw(x,x)+sdtw(y,y)). If X is the distance array itself,
use metric="precomputed". If None, dtw is used.

sample_size
[int or None (default: None)] The size of the sample to use when computing the Silhouette
Coefficient on a random subset of the data. If sample_size is None, no sampling is used.

metric_params
[dict or None (default: None)] Parameter values for the chosen metric. For metrics that
accept parallelization of the cross-distance matrix computations, n_jobs key passed in met-
ric_params is overridden by the n_jobs argument.

n_jobs
[int or None, optional (default=None)] The number of jobs to run in parallel for cross-
distance matrix computations. Ignored if the cross-distance matrix cannot be computed using
parallelization. None means 1 unless in a joblib.parallel_backend context. -1 means
using all processors. See scikit-learns’ Glossary for more details.

verbose
[int (default: 0)] If nonzero, print information about the inertia while learning the model and
joblib progress messages are printed.

random_state
[int, RandomState instance or None, optional (default: None)] The generator used to ran-
domly select a subset of samples. If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the random number generator; If None,
the random number generator is the RandomState instance used by np.random. Used when
sample_size is not None.

**kwds
[optional keyword parameters] Any further parameters are passed directly to the distance
function, just as for the metric_params parameter.

Returns

silhouette
[float] Mean Silhouette Coeflicient for all samples.

3.2. tslearn.clustering 55

http://scikit-learn.org/stable/modules/clustering.html#silhouette-coefficient
https://scikit-learn.org/stable/glossary.html#term-n-jobs

tslearn Documentation, Release 0.6.3

References

(11, [2]

Examples

>>> from tslearn.generators import random_walks
>>> from tslearn.metrics import cdist_dtw

>>> from tslearn.metrics import dtw

>>> numpy . random. seed (0)

>>> X = random_walks(n_ts=20, sz=16, d=1)

>>> labels = numpy.random.randint(2, size=20)
>>> silhouette_score(X, labels, metric="dtw")

0.13383800...

>>> silhouette_score(X, labels, metric="euclidean")
0.09126917...

>>> silhouette_score(X, labels, metric="softdtw")
0.17953934...

>>> silhouette_score(X, labels, metric="softdtw",
- metric_params={"gamma": 2.})
0.17591060. ..
>>> silhouette_score(cdist_dtw(X), labels,
e metric="precomputed")
0.13383800...
>>> silhouette_score(X, labels, metric=dtw)
0.13383800...

3.3 tslearn.datasets

The tslearn.datasets module provides simplified access to standard time series datasets.

Classes
UCR_UEA_datasets([use_cache]) A convenience class to access UCR/UEA time series
datasets.
CachedDatasets() A convenience class to access cached time series
datasets.

3.3.1 tslearn.datasets.UCR_UEA_ datasets

class tslearn.datasets.UCR_UEA_datasets (use_cache=True)

A convenience class to access UCR/UEA time series datasets.
When using one (or several) of these datasets in research projects, please cite [1].

This class will attempt to recover from some known misnamed files, like the StarLightCurves dataset being
provided in StarlightCurves.zip and alike.

Parameters

56 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

use_cache
[bool (default:

True)] Whether a cached version of the dataset should be used in

load_dataset (), if one is found. Datasets are always cached upon loading, and this pa-
rameter only determines whether the cached version shall be refreshed upon loading.

See also:

CachedDatasets
Provides pre-selected datasets for offline use.

Notes

Downloading dataset files can be time-consuming, it is recommended using use_cache=True (default) in order
to only experience downloading time once per dataset and work on a cached version of the datasets afterward.

References

(1]

Methods

baseline_accuracy([list_datasets, list_methods])
cache_all()

list_cached_datasets()

list_datasets()
list_multivariate_datasets()

list_univariate_datasets()
load_dataset(dataset_name)

Report baseline performances as provided by
UEA/UCR website (for univariate datasets only).
Cache all datasets from the UCR/UEA archive for
later use.

List datasets from the UCR/UEA archive that are
available in cache.

List datasets (both univariate and multivariate) avail-
able in the UCR/UEA archive.

List multivariate datasets in the UCR/UEA archive.
List univariate datasets in the UCR/UEA archive.
Load a dataset from the UCR/UEA archive from its
name.

baseline_accuracy (list_datasets=None, list_methods=None)

Report baseline performances as provided by UEA/UCR website (for univariate datasets only).

Parameters

list_datasets: list or None (default: None)
A list of strings indicating for which datasets performance should be reported. If None,

performance is reported for all datasets.

list_methods: list or None (default: None)
A list of baselines methods for which performance should be reported. If None, perfor-
mance for all baseline methods is reported.

Returns

dict

A dictionary in which keys are dataset names and associated values are themselves dictio-
naries that provide accuracy scores for the requested methods.

3.3. tslearn.datasets

57

tslearn Documentation, Release 0.6.3

Examples

>>> uea_ucr = UCR_UEA_datasets()

>>> dict_acc = uea_ucr.baseline_accuracy(
list_datasets=["Adiac", "ChlorineConcentration"],

- list_methods=["C45"])

>>> len(dict_acc)

2

>>> dict_acc["Adiac"]

{'C45': 0.542199...}

>>> all_dict_acc = uea_ucr.baseline_accuracy()

>>> len(all_dict_acc)

85

cache_all()
Cache all datasets from the UCR/UEA archive for later use.

list_cached_datasets()
List datasets from the UCR/UEA archive that are available in cache.

Examples

>>> beetlefly = UCR_UEA_datasets().load_dataset("BeetleFly")
>>> 1 = UCR_UEA_datasets().list_cached_datasets()

>>> "BeetleFly" in 1

True

list_datasets()

List datasets (both univariate and multivariate) available in the UCR/UEA archive.
Returns

list of str:
A list of names of all (univariate and multivariate) dataset namas.

Examples

>>> 1 = UCR_UEA_datasets().list_datasets()
>>> "PenDigits" in 1

True

>>> "BeetleFly" in 1

True

>>> "DatasetThatDoesNotExist" in 1
False

list_multivariate_datasets()
List multivariate datasets in the UCR/UEA archive.

Returns

list of str:
A list of the names of all multivariate dataset namas.

58 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

Examples

>>> 1 = UCR_UEA_datasets().list_multivariate_datasets()
>>> "PenDigits" in 1
True

list_univariate_datasets()
List univariate datasets in the UCR/UEA archive.

Returns

list of str:
A list of the names of all univariate datasets.

Examples

>>> 1 = UCR_UEA_datasets().list_univariate_datasets()
>>> len(l)
85

load_dataset (dataset_name)
Load a dataset from the UCR/UEA archive from its name.

On failure, None is returned for each of the four values and a RuntimeWarning is printed.
Parameters

dataset_name
[str] Name of the dataset. Should be in the list returned by list_datasets

Returns

numpy.ndarray of shape (n_ts_train, sz, d) or None
Training time series. None if unsuccessful.

numpy.ndarray of integers or strings with shape (n_ts_train,) or None
Training labels. None if unsuccessful.

numpy.ndarray of shape (n_ts_test, sz, d) or None
Test time series. None if unsuccessful.

numpy.ndarray of integers or strings with shape (n_ts_test,) or None
Test labels. None if unsuccessful.

Examples

>>> data_loader = UCR_UEA_datasets()

>>> X_train, y_train, X_test, y_test = data_loader.load_dataset(
- "TwoPatterns')

>>> X_train.shape

(1000, 128, 1)

>>> y_train.shape

(1000,)
>>> X_train, y_train, X_test, y_test = data_loader.load_dataset(
"Adiac")
(continues on next page)
3.3. tslearn.datasets 59

tslearn Documentation, Release 0.6.3

(continued from previous page)
>>> X_train.shape
(390, 176, 1)
>>> X_train, y_train, X_test, y_test = data_loader.load_dataset(
- "PenDigits")
>>> X_train.shape
(7494, 8, 2)
>>> assert (None, None, None, None) == data_loader.load_dataset(
"DatasetThatDoesNotExist")

Examples using tslearn.datasets.UCR_UEA_datasets

e [-NN with SAX + MINDIST

* Early Classification

3.3.2 tslearn.datasets.CachedDatasets

class tslearn.datasets.CachedDatasets

A convenience class to access cached time series datasets.

Note, that these cached datasets are statically included into #slearn and are distinct from the ones in
UCR_UEA_datasets.

When using the Trace dataset, please cite [1].
See also:

UCR_UEA_datasets
Provides more datasets and supports caching.

References

[1]

Methods
list_datasets() List cached datasets.
load_dataset(dataset_name) Load a cached dataset from its name.

list_datasets()
List cached datasets.

Returns

list of str:
A list of names of all cached (univariate and multivariate) dataset namas.

60

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

Examples

>>> from tslearn.datasets import UCR_UEA_datasets

>>> _ = UCR_UEA_datasets().load_dataset("Trace")

>>> cached = UCR_UEA_datasets().list_cached_datasets()
>>> "Trace" in cached

True

load_dataset (dataset_name)

Load a cached dataset from its name.
Parameters

dataset_name
[str] Name of the dataset. Should be in the list returned by 1ist_datasets().

Returns

numpy.ndarray of shape (n_ts_train, sz, d) or None
Training time series. None if unsuccessful.

numpy.ndarray of integers with shape (n_ts_train,) or None
Training labels. None if unsuccessful.

numpy.ndarray of shape (n_ts_test, sz, d) or None
Test time series. None if unsuccessful.

numpy.ndarray of integers with shape (n_ts_test,) or None
Test labels. None if unsuccessful.

Raises

IOError
If the dataset does not exist or cannot be read.

Examples

>>> data_loader = CachedDatasets()

>>> X_train, y_train, X_test, y_test = data_loader.load_dataset(
- "Trace")

>>> print(X_train. shape)
(100, 275, 1)

>>> print(y_train.shape)
(100,)

Examples using tslearn.datasets.CachedDatasets

k-NN search

Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier
KShape

Kernel k-means

Barycenters

Soft-DTW weighted barycenters

3.3. tslearn.datasets 61

tslearn Documentation, Release 0.6.3

* k-means

* SVM and GAK

* Learning Shapelets

» Aligning discovered shapelets with timeseries

* Learning Shapelets: decision boundaries in 2D distance space
e Soft-DTW loss for PyTorch neural network

* Model Persistence

* Distance and Matrix Profiles

3.4 tslearn.early_classification

The tslearn.early_classification module gathers early classifiers for time series.

Such classifiers aim at performing prediction as early as possible (i.e. they do not necessarily wait for the end of the
series before prediction is triggered).

User guide: See the Early Classification section for further
details.

Classes

NonMyopicEarlyClassifier([n_clusters, ...]) Early Classification modelling for time series using the
model presented in [1].

3.4.1 tslearn.early_classification.NonMyopicEarlyClassifier

class tslearn.early_classification.NonMyopicEarlyClassifier (n_clusters=2, base_classifier=None,
min_t=1, lamb=1.0,
cost_time_parameter=1.0,
random_state=None)

Early Classification modelling for time series using the model presented in [1].
Parameters

n_clusters
[int] Number of clusters to form.

base_classifier
[Estimator or None] Estimator (instance) to be cloned and used for classifications. If None,
the chosen classifier is a INN with Euclidean metric.

min_t
[int] Earliest time at which a classification can be performed on a time series

lamb
[float] Value of the hyper parameter lambda used during the computation of the cost function
to evaluate the probability that a time series belongs to a cluster given the time series.

62 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

cost_time_parameter
[float] Parameter of the cost function of time. This function is of the form : f(time) = time *
cost_time_parameter

random_state: int
Random state of the base estimator

Attributes

classifiers_
[list] A list containing all the classifiers trained for the model, that is, (maximum_time_stamp
- min_t) elements.

pyhatyck_
[array like of shape (maximum_time_stamp - min_t, n_cluster, __n_classes, __n_classes)]
Contains the probabilities of being classified as class y_hat given class y and cluster ck for
a trained classifier. The penultimate dimension of the array is associated to the true class of

the series and the last dimension to the predicted class.

pyck_
[array like of shape (__n_classes, n_cluster)] Contains the probabilities of being of true class
y given a cluster ck

X _fit_dims
[tuple of the same shape as the training dataset]

References

[1]

Examples

>>> dataset = to_time_series_dataset([[1, 2, 3, 4, 5, 6],
[1l 2! 3’ 4! 5! 6]!
[1! 2! 3! 4! 57 6]!
(1, 2, 3, 3, 2, 11,
(1, 2, 3, 3, 2, 11,
[1, 2, 3, 3, 2, 11,
[3, 2, 1, 1, 2, 3],
[3, 2, 1, 1, 2, 31D

>>y =[0, 0, 0, 1, 1, 1, 0, 0]
>>> model = NonMyopicEarlyClassifier(n_clusters=3, lamb=1000.,
cost_time_parameter=.1,
e random_state=0)
>>> model . fit(dataset, y)
NonMyopicEarlyClassifier(...)
>>> print(type(model.classifiers_))
<class 'dict'>
>>> print(model.pyck_)

[[0. 1. 1.]

[1. 0. 0.]]
>>> preds, pred_times = model.predict_class_and_earliness(dataset)
>>> preds
array([0, 0, 0, 1, 1, 1, 0, 0])

(continues on next page)

3.4. tslearn.early_classification 63

tslearn Documentation, Release 0.6.3

>>> pred_times
array([4, 4, 4, 4, 4, 4, 1, 1D

(continued from previous page)

>>> pred_probas, pred_times = model.predict_proba_and_earliness(dataset)

>>> pred_probas
array([[1l., 0.],

[1., 0.7,
[1., 0.7,
[0., 1.7,
@cp Lol
©@sp Lollg
[1., 0.7,
[1., 0.1

>>> pred_times
array([4, 4, 4, 4, 4, 4, 1, 1D

Methods

early_classification_cost(X,y)
fitX,y)

get_cluster_probas(Xi)
get_metadata_routing()
get_params([deep])

predict(X)
predict_class_and_earliness(X)

predict_proba(X)
predict_proba_and_earliness(X)

score(X, y[, sample_weight])

set_params(**params)
set_score_request(*[, sample_weight])

Compute early classification score.

Fit early classifier.

Compute cluster probability P(cg|X4).

Get metadata routing of this object.

Get parameters for this estimator.

Provide predicted class.

Provide predicted class as well as prediction times-
tamps.

Probability estimates.

Provide probability estimates as well as prediction
timestamps.

Return the mean accuracy on the given test data and
labels.

Set the parameters of this estimator.

Request metadata passed to the score method.

early_classification_cost(X, y)

Compute early classification score.

The score is computed as:

1
1—acc+aﬁzm
1

where « is the trade-off parameter (self.cost_time_parameter) and t; are prediction timestamps.

Parameters

X

[array-like of shape (n_series, n_timestamps, n_features)] Vector to be scored, where
n_series is the number of time series, n_timestamps is the number of timestamps in the
series and n_features is the number of features recorded at each timestamp.

y

[array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

64

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

Returns

float
Early classification cost (a positive number, the lower the better)

Examples

>>> dataset = to_time_series_dataset([[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 3, 2, 11,
[1, 2, 3, 3, 2, 11,
[1, 2, 3, 3, 2, 1],
[3, 2, 1, 1, 2, 31,
[3, 2, 1, 1, 2, 311D

>>y = [0, 0, 0, 1, 1, 1, 0, 0]
>>> model = NonMyopicEarlyClassifier(n_clusters=3, lamb=1000.,
cost_time_parameter=.1,
- random_state=0)

>>> model. fit(dataset, y)
NonMyopicEarlyClassifier(...)
>>> preds, pred_times = model.predict_class_and_earliness(dataset)
>>> preds

array([0, 0, 0, 1, 1, 1, 0, 01

>>> pred_times

array([4, 4, 4, 4, 4, 4, 1, 1])

>>> model.early_classification_cost(dataset, y)

0.325

fit (X, y)
Fit early classifier.

Parameters

X
[array-like of shape (n_series, n_timestamps, n_features)] Training data, where n_series
is the number of time series, n_timestamps is the number of timestamps in the series and
n_features is the number of features recorded at each timestamp.

y
[array-like of shape (n_samples,)] Target values. Will be cast to X’s dtype if necessary

Returns

self
[returns an instance of self.]

get_cluster_probas (Xi)
Compute cluster probability P(cy|X1).

This quantity is computed using the following formula:

where

T 1+exp —AAL(X1)

. tslearn.early_classification 65

tslearn Documentation, Release 0.6.3

with

AR(Xi) = D — d(DXz,ck)

and D is the average of the distances between Xi and the cluster centers.
Parameters

Xi: numpy array, shape (t, d)
A time series observed up to time t

Returns

probas
[numpy array, shape (n_clusters,)]

Examples

>>> from tslearn.utils import to_time_series

>>> dataset = to_time_series_dataset([[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 11,
[3, 2, 1, 1, 2, 31,
3, 2, 1, 1, 2, 311

>>y=1[0,0,0, 1, 1, 1, 0, 0]
>>> ts® = to_time_series([1, 2])

)

>>> model = NonMyopicEarlyClassifier(n_clusters=3, lamb=0.,

random_state=0)

>>> probas = model.fit(dataset, y).get_cluster_probas(ts0)

>>> probas.shape

@3,)

>>> probas

array([0.33..., 0.33..., 0.33...1)

>>> model = NonMyopicEarlyClassifier(n_clusters=3, lamb=10000.,

random_state=0)

>>> probas = model.fit(dataset, y).get_cluster_probas(ts®)

>>> probas.shape

@3,

>>> probas

array([0.5, 0.5, 0. 1)

>>> tsl = to_time_series([3, 2])
>>> model.get_cluster_probas(tsl)
array([0., 0., 1.1)

get_metadata_routing()
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.
Returns

routing

[MetadataRequest] A MetadataRequest encapsulating routing information.

66

Chapter 3. API Reference

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

tslearn Documentation, Release 0.6.3

get_params (deep=True)

Get parameters for this estimator.
Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

predict (X)
Provide predicted class.
Parameters

X
[array-like of shape (n_series, n_timestamps, n_features)] Vector to be scored, where
n_series is the number of time series, n_timestamps is the number of timestamps in the
series and n_features is the number of features recorded at each timestamp.

Returns

array, shape (n_samples,)
Predicted classes.

predict_class_and_earliness(X)
Provide predicted class as well as prediction timestamps.
Prediction timestamps are timestamps at which a prediction is made in early classification setting.
Parameters

X
[array-like of shape (n_series, n_timestamps, n_features)] Vector to be scored, where
n_series is the number of time series, n_timestamps is the number of timestamps in the
series and n_features is the number of features recorded at each timestamp.

Returns

array, shape (n_samples,)
Predicted classes.

array-like of shape (n_series,)
Prediction timestamps.

predict_proba(X)
Probability estimates.
The returned estimates for all classes are ordered by the label of classes.
Parameters

X
[array-like of shape (n_series, n_timestamps, n_features)] Vector to be scored, where
n_series is the number of time series, n_timestamps is the number of timestamps in the
series and n_features is the number of features recorded at each timestamp.

Returns

3.4.

tslearn.early_classification

67

tslearn Documentation, Release 0.6.3

array-like of shape (n_series, n_classes)
Probability of the sample for each class in the model, where classes are ordered as they are

in self.classes_.
predict_proba_and_earliness(X)
Provide probability estimates as well as prediction timestamps.

Prediction timestamps are timestamps at which a prediction is made in early classification setting. The
returned estimates for all classes are ordered by the label of classes.

Parameters

X
[array-like of shape (n_series, n_timestamps, n_features)] Vector to be scored, where
n_series is the number of time series, n_timestamps is the number of timestamps in the
series and n_features is the number of features recorded at each timestamp.

Returns

array-like of shape (n_series, n_classes)
Probability of the sample for each class in the model, where classes are ordered as they are
in self.classes_.

array-like of shape (n_series,)
Prediction timestamps.

score (X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X
[array-like of shape (n_samples, n_features)] Test samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight
[array-like of shape (n_samples,), default=None] Sample weights.

Returns

score
[float] Mean accuracy of self.predict(X) w.rt. y.

set_params (**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

68 Chapter 3. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

tslearn Documentation, Release 0.6.3

set_score_request (*, sample_weight: bool | None | str = 'SUNCHANGEDS$") —
NonMyopicEarlyClassifier

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

e True: metadata is requested, and passed to score if provided. The request is ignored if metadata is
not provided.

» False: metadata is not requested and the meta-estimator will not pass it to score.
* None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

e str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weight
[str, True, False, or None, default=sklearn.utils.metadata_routing. UNCHANGED] Meta-
data routing for sample_weight parameter in score.

Returns

self
[object] The updated object.

Examples using tslearn.early_classification.NonMyopicEarlyClassifier

 Early Classification

3.5 tslearn.generators

The tslearn.generators module gathers synthetic time series dataset generation routines.

3.5. tslearn.generators 69

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

tslearn Documentation, Release 0.6.3

Functions
random_walk_blobs([n_ts_per_blob, sz, d, ...]) Blob-based random walk time series generator.
random_walks([n_ts, sz, d, mu, std, ...]) Random walk time series generator.

3.5.1 tslearn.generators.random_walk_blobs

tslearn.generators.random_walk_blobs(n_ts_per_blob=100, sz=256, d=1, n_blobs=2, noise_level=1.0,

random_state=None)

Blob-based random walk time series generator.

Generate n_ts_per_blobs * n_blobs time series of size sz and dimensionality d. Generated time series follow the
model:

tsft] =ts[t — 1]+ a

where a is drawn from a normal distribution of mean mu and standard deviation std.

Each blob contains time series derived from a same seed time series with added white noise.

Parameters

n_ts_per_blob
[int (default: 100)] Number of time series in each blob

SZ
[int (default: 256)] Length of time series (number of time instants)

[int (default: 1)] Dimensionality of time series

n_blobs
[int (default: 2)] Number of blobs

noise_level
[float (default: 1.)] Standard deviation of white noise added to time series in each blob

random_state
[integer or numpy.RandomState or None (default: None)] Generator used to draw the time
series. If an integer is given, it fixes the seed. Defaults to the global numpy random number
generator.

Returns

numpy.ndarray
A dataset of random walk time series

numpy.ndarray
Labels associated to random walk time series (blob id)

70

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

Examples

>>> X, y = random_walk_blobs(n_ts_per_blob=100, sz=256, d=5, n_blobs=3)
>>> X.shape

(300, 256, 5)
>>> y.shape
(300,)

Examples using tslearn.generators.random_walk_blobs

* Nearest neighbors

3.5.2 tslearn.generators.random_walks

tslearn.generators.random_walks (n_ts=100, sz=256, d=1, mu=0.0, std=1.0, random_state=None)
Random walk time series generator.

Generate n_ts time series of size sz and dimensionality d. Generated time series follow the model:
ts[t] =tsft—1]+a

where a is drawn from a normal distribution of mean mu and standard deviation std.
Parameters

n_ts
[int (default: 100)] Number of time series.

SZ
[int (default: 256)] Length of time series (number of time instants).

[int (default: 1)] Dimensionality of time series.

mu

[float (default: 0.)] Mean of the normal distribution from which random walk steps are
drawn.

std

[float (default: 1.)] Standard deviation of the normal distribution from which random walk
steps are drawn.

random_state

[integer or numpy.RandomState or None (default: None)] Generator used to draw the time
series. If an integer is given, it fixes the seed. Defaults to the global numpy random number
generator.

Returns

numpy.ndarray
A dataset of random walk time series

3.5. tslearn.generators 71

tslearn Documentation, Release 0.6.3

Examples

>>> random_walks(n_ts=100, sz=256, d=5, mu=0., std=1.).shape
(100, 256, 5)

Examples using tslearn.generators.random_walks

* Longest Common Subsequence

* LB _Keogh

o sDTW multi path matching

* Longest Commom Subsequence with a custom distance metric
o DTW computation with a custom distance metric

PAA and SAX features

3.6 tslearn.matrix_profile

The tslearn.matrix_profile module gathers methods for the computation of Matrix Profiles from time series.

User guide: See the Matrix Profile section for further details.

Classes

MatrixProfile([subsequence_length, ...]) Matrix Profile transformation.

3.6.1 tslearn.matrix_profile.MatrixProfile

class tslearn.matrix_profile.MatrixProfile (subsequence_length=1, implementation="numpy’,
scale=True)

Matrix Profile transformation.
Matrix Profile was originally presented in [1].
Parameters

subsequence_length
[int (default: 1)] Length of the subseries (also called window size) to be used for subseries
distance computations.

implementation
[str (default: “numpy”)] Matrix profile implementation to use. Defaults to “numpy” to

use the pure numpy version. All the available implementations are [“numpy”, “stump”,
“gpu_stump”].

“stump” and “gpu_stump” are both implementations from the stumpy python library, the
latter requiring a GPU. Stumpy is a library for efficiently computing the matrix profile which
is optimized for speed, performance and memory. See [2] for the documentation. “numpy”
is the default pure numpy implementation and does not require stumpy to be installed.

72 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

scale: bool (default: True)
Whether input data should be scaled for each feature of each time series to have zero mean
and unit variance. Default for this parameter is set to True to match the standard matrix

profile setup.

References

(11, (2]

Examples

>>> time_series = [0.,
>>> ds = [time_series]

Bog Bag Yo

14., 15., 1., 2., 2., 10., 7.]

>>> mp = MatrixProfile(subsequence_length=4, scale=False)

>>> mp. fit_transform(ds) [0, :, 0]
array([6.85..., 1.41..., 6.16..., ., 11.40...,
13.56..., 18. ., 13.96..., ., 6.16...1)

Methods

fit(X[, yD)
fit_transform(X[, y])

from_hdf5(path)
from_json(path)
from_pickle(path)
get_metadata_routing()
get_params([deep])
set_output(*[, transform])
set_params(**params)
to_hdf5(path)
to_json(path)
to_pickle(path)
transform(X[, yl)

Fit a Matrix Profile representation.

Transform a dataset of time series into its Matrix Pro-
file

Load model from a HDFS file.

Load model from a JSON file.

Load model from a pickle file.

Get metadata routing of this object.

Get parameters for this estimator.

Set output container.

Set the parameters of this estimator.

Save model to a HDF5 file.

Save model to a JSON file.

Save model to a pickle file.

Transform a dataset of time series into its Matrix Pro-
file

fit (X, y=None)

Fit a Matrix Profile representation.

Parameters

X

[array-like of shape (n_ts, sz, d)] Time series dataset

Returns

MatrixProfile
self

fit_transform(X, y=None, **fit_params)

3.6. tslearn.matrix_profile

73

tslearn Documentation, Release 0.6.3

Transform a dataset of time series into its Matrix Profile
representation.
Parameters

X
[array-like of shape (n_ts, sz, d)] Time series dataset

Returns
numpy.ndarray of shape (n_ts, output_size, 1)

Matrix-Profile-Transformed dataset. ouput_size is equal to sz - subsequence_length + 1

classmethod from_hdf5 (parh)
Load model from a HDFS5 file. Requires h5py http://docs.h5py.org/

Parameters

path
[str] Full path to file.

Returns
Model instance

classmethod from_json(path)
Load model from a JSON file.

Parameters

path
[str] Full path to file.

Returns
Model instance

classmethod from_pickle(path)
Load model from a pickle file.

Parameters

path
[str] Full path to file.

Returns
Model instance

get_metadata_routing()

Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params (deep=True)

Get parameters for this estimator.

Parameters

74 Chapter 3. API Reference

http://docs.h5py.org/
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

tslearn Documentation, Release 0.6.3

deep

[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns
params
[dict] Parameter names mapped to their values.
set_output (¥, transform=None)

Set output container.

See Introducing the set_output API for an example on how to use the API.
Parameters
transform
[{“default”, “pandas”}, default=None] Configure output of transform and fit_transform.
* “default”: Default output format of a transformer
* “pandas”: DataFrame output
* None: Transform configuration is unchanged
Returns
self
[estimator instance] Estimator instance.
set_params (**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have

parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params
[dict] Estimator parameters.
Returns
self
[estimator instance] Estimator instance.
to_hdf5 (path)
Save model to a HDFS file. Requires h5py http://docs.hSpy.org/
Parameters
path
[str] Full file path. File must not already exist.
Raises
FileExistsError
If a file with the same path already exists.
to_json(path)
Save model to a JSON file.

Parameters

3.6. tslearn.matrix_profile 75

https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
http://docs.h5py.org/

tslearn Documentation, Release 0.6.3

path
[str] Full file path.

to_pickle(path)
Save model to a pickle file.

Parameters

path
[str] Full file path.

transform(X, y=None)

Transform a dataset of time series into its Matrix Profile
representation.
Parameters

X
[array-like of shape (n_ts, sz, d)] Time series dataset

Returns

numpy.ndarray of shape (n_ts, output_size, 1)
Matrix-Profile-Transformed dataset. ouput_size is equal to sz - subsequence_length + 1

Examples using tslearn.matrix_profile.MatrixProfile

e Matrix Profile

* Distance and Matrix Profiles

3.7 tslearn.metrics

The tslearn.metrics module delivers time-series specific metrics to be used at the core of machine learning algo-
rithms.

User guide: See the Dynamic Time Warping (DTW) section for further details.

76 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

Functions

cdist_dtw(datasetl[, dataset2, ...])
cdist_gak(datasetl[, dataset2, sigma, ...])

ctw(sl, s2[, max_iter, n_components, ...])

ctw_path(sl, s2[, max_iter, n_components, ...])

dtw(sl, s2[, global_constraint, ...])

dtw_path(sl, s2[, global_constraint, ...])

dtw_path_from_metric(sl[, s2, metric, ...])

dtw_limited_warping_length(sl, s2, max_length)

dtw_path_limited_warping_length(sl, s2, ...)

subsequence_path(acc_cost_mat, idx_path_end)

subsequence_cost_matrix(subseq, longseq[, be])

dtw_subsequence_path(subseq, longseq[, be])

lcss(sl, s2[, eps, global_constraint, ...])

lcss_path(sl, s2[, eps, global_constraint, ...])

lcss_path_from_metric(sl[, s2, eps, metric, ...])

gak(sl, s2[, sigma, be])

soft_dtw(tsl, ts2[, gamma, be, ...])
soft_dtw_alignment(tsl, ts2[, gamma, be, ...])

Compute cross-similarity matrix using Dynamic Time
Warping (DTW) similarity measure.

Compute cross-similarity matrix using Global Align-
ment kernel (GAK).

Compute Canonical Time Warping (CTW) similarity
measure between (possibly multidimensional) time se-
ries and return the similarity.

Compute Canonical Time Warping (CTW) similarity
measure between (possibly multidimensional) time se-
ries and return the alignment path, the canonical corre-
lation analysis (sklearn) object and the similarity.
Compute Dynamic Time Warping (DTW) similarity
measure between (possibly multidimensional) time se-
ries and return it.

Compute Dynamic Time Warping (DTW) similarity
measure between (possibly multidimensional) time se-
ries and return both the path and the similarity.
Compute Dynamic Time Warping (DTW) similarity
measure between (possibly multidimensional) time se-
ries using a distance metric defined by the user and re-
turn both the path and the similarity.

Compute Dynamic Time Warping (DTW) similarity
measure between (possibly multidimensional) time se-
ries under an upper bound constraint on the resulting
path length and return the similarity cost.

Compute Dynamic Time Warping (DTW) similarity
measure between (possibly multidimensional) time se-
ries under an upper bound constraint on the resulting
path length and return the path as well as the similar-
ity cost.

Compute the optimal path through an accumulated cost
matrix given the endpoint of the sequence.

Compute the accumulated cost matrix score between a
subsequence and a reference time series.

Compute sub-sequence Dynamic Time Warping (DTW)
similarity measure between a (possibly multidimen-
sional) query and a long time series and return both the
path and the similarity.

Compute the Longest Common Subsequence (LCSS)
similarity measure between (possibly multidimensional)
time series and return the similarity.

Compute the Longest Common Subsequence (LCSS)
similarity measure between (possibly multidimensional)
time series and return both the path and the similarity.
Compute the Longest Common Subsequence (LCSS)
similarity measure between (possibly multidimensional)
time series using a distance metric defined by the user
and return both the path and the similarity.

Compute Global Alignment Kernel (GAK) between
(possibly multidimensional) time series and return it.
Compute Soft-DTW metric between two time series.
Compute Soft-DTW metric between two time series and

Lot thesimilest L the ali

3.7. tslearn.metrics
cdist_soft_dtw(datasetl[, dataset2, gamma, ...])

cdist_soft_dtw_normalized(datasetl[, ...])

trix. 7
Compute cross-similarity matrix using Soft-DTW met-
ric.

Compute cross-similarity matrix using a normalized ver-

tslearn Documentation, Release 0.6.3

3.7.1 tslearn.metrics.cdist_dtw

tslearn.metrics.cdist_dtw(datasetl, dataset2=None, global_constraint=None, sakoe_chiba_radius=None,

itakura_max_slope=None, n_jobs=None, verbose=0, be=None)
Compute cross-similarity matrix using Dynamic Time Warping (DTW) similarity measure.

DTW is computed as the Euclidean distance between aligned time series, i.e., if 7 is the alignment path:

DTW(X,Y) = [> [|Xi = Yj|?
(i,j)em

Note that this formula is still valid for the multivariate case.

It is not required that time series share the same size, but they must be the same dimension. DTW was originally
presented in [1] and is discussed in more details in our dedicated user-guide page.

Parameters

datasetl
[array-like, shape=(n_ts1, sz1, d) or (n_ts1, sz1) or (sz1,)] A dataset of time series. If shape
is (n_ts1, sz1), the dataset is composed of univariate time series. If shape is (sz1,), the dataset
is composed of a unique univariate time series.

dataset2
[None or array-like, shape=(n_ts2, sz2, d) or (n_ts2, sz2) or (sz2,) (default: None)] Another
dataset of time series. If None, self-similarity of dataset] is returned. If shape is (n_ts2, sz2),
the dataset is composed of univariate time series. If shape is (sz2,), the dataset is composed
of a unique univariate time series.

global_constraint
[{“itakura”, “sakoe_chiba”} or None (default: None)] Global constraint to restrict admissible
paths for DTW.

sakoe_chiba_radius

[int or None (default: None)] Radius to be used for Sakoe-Chiba band global constraint. The
Sakoe-Chiba radius corresponds to the parameter § mentioned in [1], it controls how far in
time we can go in order to match a given point from one time series to a point in another
time series. If None and global_constraint is set to “sakoe_chiba”, a radius of 1 is used. If
both sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer
which constraint to use among the two. In this case, if global_constraint corresponds to no
global constraint, a RuntimeWarning is raised and no global constraint is used.

itakura_max_slope
[float or None (default: None)] Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope of 2. is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which
constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

n_jobs
[int or None, optional (default=None)] The number of jobs to run in parallel. None means
1 unless in a joblib.parallel_backend context. -1 means using all processors. See
scikit-learns’ Glossary for more details.

verbose
[int, optional (default=0)] The verbosity level: if non zero, progress messages are printed.
Above 50, the output is sent to stdout. The frequency of the messages increases with the
verbosity level. If it more than 10, all iterations are reported. Glossary for more details.

78

Chapter 3. API Reference

https://scikit-learn.org/stable/glossary.html#term-n-jobs
https://joblib.readthedocs.io/en/latest/parallel.html#parallel-reference-documentation

tslearn Documentation, Release 0.6.3

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

cdist
[array-like, shape=(n_ts1, n_ts2)] Cross-similarity matrix.

See also:

dtw
Get DTW similarity score

References

(1]

Examples

>>> cdist_dtw([[1, 2, 2, 31, [1., 2., 3., 4.11)
array([[0., 1.7,

[1., 0.1D
>>> cdist_dtw([[1, 2, 2, 31, [1., 2., 3., 4.11, [CC1, 2, 31, [2, 3, 4, 51D
array([[0. , 2.44948974],

[1. , 1.41421356]1]1)

3.7.2 tslearn.metrics.cdist_gak

tslearn.metrics.cdist_gak(datasetl, dataset2=None, sigma=1.0, n_jobs=None, verbose=0, be=None)

Compute cross-similarity matrix using Global Alignment kernel (GAK).
GAK was originally presented in [1].
Parameters

datasetl
[array-like, shape=(n_ts1, sz1, d) or (n_ts1, sz1) or (sz1,)] A dataset of time series. If shape
is (n_ts1, sz1), the dataset is composed of univariate time series. If shape is (sz1,), the dataset
is composed of a unique univariate time series.

dataset2
[None or array-like, shape=(n_ts2, sz2, d) or (n_ts2, sz2) or (sz2,) (default: None)] Another
dataset of time series. If None, self-similarity of dataset] is returned. If shape is (n_ts2, sz2),
the dataset is composed of univariate time series. If shape is (sz2,), the dataset is composed
of a unique univariate time series.

sigma
[float (default 1.)] Bandwidth of the internal gaussian kernel used for GAK

n_jobs
[int or None, optional (default=None)] The number of jobs to run in parallel. None means

3.7. tslearn.metrics 79

tslearn Documentation, Release 0.6.3

1 unless in a joblib.parallel_backend context. -1 means using all processors. See
scikit-learns’ Glossary for more details.

verbose
[int, optional (default=0)] The verbosity level: if non zero, progress messages are printed.
Above 50, the output is sent to stdout. The frequency of the messages increases with the
verbosity level. If it more than 10, all iterations are reported. Glossary for more details.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

array-like, shape=(n_ts1, n_ts2)
Cross-similarity matrix.

See also:

gak
Compute Global Alignment kernel

References

(1]

Examples

>>> cdist_gak([[1, 2, 2, 3], [l., 2., 3., 4.]], sigma=2.)
array([[1. , 0.65629661],
[0.65629661, 1. 1D
>>> cdist_gak([[1, 2, 2], [1., 2., 3., 4.1],
(cy, 2, 2, 31, 1., 2., 3., 4.1, [1, 2, 2, 311,

sigma=2.)
array([[0.71059484, 0.29722877, 0.71059484],
[0.65629661, 1. , 0.65629661]11)

3.7.3 tslearn.metrics.ctw

tslearn.metrics.ctw(sl, s2, max_iter=100, n_components=None, global_constraint=None,

sakoe_chiba_radius=None, itakura_max_slope=None, verbose=False, be=None)

Compute Canonical Time Warping (CTW) similarity measure between (possibly multidimensional) time series
and return the similarity.

Canonical Time Warping is a method to align time series under rigid registration of the feature space. It should
not be confused with Dynamic Time Warping (DTW), though CTW uses DTW.

It is not required that both time series share the same size, nor the same dimension (CTW will find a subspace
that best aligns feature spaces). CTW was originally presented in [1].

Parameters

80

Chapter 3. API Reference

https://scikit-learn.org/stable/glossary.html#term-n-jobs
https://joblib.readthedocs.io/en/latest/parallel.html#parallel-reference-documentation

tslearn Documentation, Release 0.6.3

sl
[array-like, shape=(sz1, d) or (szl,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.

s2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.

max_iter

[int (default: 100)] Number of iterations for the CTW algorithm. Each iteration

n_components
[int (default: None)] Number of components to be used for Canonical Correlation Analysis.
If None, the lower minimum number of features between seql and seq2 is used.

global_constraint
[{“itakura”, “sakoe_chiba”} or None (default: None)] Global constraint to restrict admissible
paths for DTW calls.

sakoe_chiba_radius
[int or None (default: None)] Radius to be used for Sakoe-Chiba band global constraint.
If None and global_constraint is set to “sakoe_chiba”, a radius of 1 is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which
constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

itakura_max_slope
[float or None (default: None)] Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope of 2. is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which
constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

verbose
[bool (default: True)] If True, scores are printed at each iteration of the algorithm.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

See also:

Ctw
Get

float
Similarity score

only the similarity score for CTW

3.7. tslearn.metrics 81

tslearn Documentation, Release 0.6.3

References

(1]

Examples

>>> ctw([1, 2, 31, [1., 2., 2., 3.1)

0.0

>>> ctw([1, 2, 31, [[1., 1.1, [2., 2.], [2., 2.0, [3., 3.1D
0.0

3.7.4 tslearn.metrics.ctw_path

tslearn.metrics.ctw_path(sl, s2, max_iter=100, n_components=None, global_constraint=None,

sakoe_chiba_radius=None, itakura_max_slope=None, verbose=False, be=None)

Compute Canonical Time Warping (CTW) similarity measure between (possibly multidimensional) time series
and return the alignment path, the canonical correlation analysis (sklearn) object and the similarity.

Canonical Time Warping is a method to align time series under rigid registration of the feature space. It should
not be confused with Dynamic Time Warping (DTW), though CTW uses DTW.

It is not required that both time series share the same size, nor the same dimension (CTW will find a subspace
that best aligns feature spaces). CTW was originally presented in [1].

Parameters

sl
[array-like, shape=(sz1, d) or (sz1,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.

s2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.

max_iter
[int (default: 100)] Number of iterations for the CTW algorithm. Each iteration

n_components
[int (default: None)] Number of components to be used for Canonical Correlation Analysis.
If None, the lower minimum number of features between s1 and s2 is used.

global_constraint
[{“itakura”, “sakoe_chiba”} or None (default: None)] Global constraint to restrict admissible
paths for DTW calls.

sakoe_chiba_radius
[int or None (default: None)] Radius to be used for Sakoe-Chiba band global constraint.
If None and global_constraint is set to “sakoe_chiba”, a radius of 1 is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which
constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

itakura_max_slope
[float or None (default: None)] Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope of 2. is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which

82

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

verbose
[bool (default: True)] If True, scores are printed at each iteration of the algorithm.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

list of integer pairs
Matching path represented as a list of index pairs. In each pair, the first index corresponds
to s1 and the second one corresponds to s2

sklearn.decomposition. CCA
The Canonical Correlation Analysis object used to align time series at convergence.

float
Similarity score

See also:

ctw
Get only the similarity score for CTW

References

(1]

Examples

>>> path, cca, dist = ctw_path([1, 2, 3], [1., 2., 2., 3.])

>>> path

[®, 0, (1, L, 1, 2), 2, 3)]

>>> type(cca)

<class 'sklearn.cross_decomposition...CCA'>

>>> dist

0.0

>>> path, cca, dist = ctw_path([1, 2, 3],

B rce., 1.1, 2., 2.1, 2., 2.1, 3., 3.1D
>>> dist
0.0

3.7. tslearn.metrics 83

tslearn Documentation, Release 0.6.3

Examples using tslearn.metrics.ctw_path

e Canonical Time Warping

3.7.5 tslearn.metrics.dtw

tslearn.metrics.dtw(sl, s2, global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None,
be=None)

Compute Dynamic Time Warping (DTW) similarity measure between (possibly multidimensional) time series
and return it.

DTW is computed as the Euclidean distance between aligned time series, i.e., if 7 is the optimal alignment path:

DTW(X,Y) = [> [|X; = Yj|?
(i,j)em

Note that this formula is still valid for the multivariate case.

It is not required that both time series share the same size, but they must be the same dimension. DTW was
originally presented in [1] and is discussed in more details in our dedicated user-guide page.

Parameters

s1
[array-like, shape=(szl, d) or (szl,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.

s2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.

global_constraint
[{“itakura”, “sakoe_chiba”} or None (default: None)| Global constraint to restrict admissible
paths for DTW.

sakoe_chiba_radius

[int or None (default: None)] Radius to be used for Sakoe-Chiba band global constraint. The
Sakoe-Chiba radius corresponds to the parameter § mentioned in [1], it controls how far in
time we can go in order to match a given point from one time series to a point in another
time series. If None and global_constraint is set to “sakoe_chiba”, a radius of 1 is used. If
both sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer
which constraint to use among the two. In this case, if global_constraint corresponds to no
global constraint, a RuntimeWarning is raised and no global constraint is used.

itakura_max_slope
[float or None (default: None)] Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope of 2. is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which
constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

84 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

float
Similarity score

See also:

dtw_path
Get both the matching path and the similarity score for DTW

cdist_dtw
Cross similarity matrix between time series datasets

References

(1]

Examples

>>> dtw([1, 2, 3], [1., 2., 2., 3.1)
0.0

>>> dtw([1, 2, 31, [1., 2., 2., 3., 4.1)
1.0

The PyTorch backend can be used to compute gradients:

>>> import torch
>>> sl = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> s2 = torch.tensor([[3.0], [4.0], [-3.0]1])
>>> sim = dtw(sl, s2, be="pytorch")
>>> print(sim)
tensor(6.4807, grad_fn=<SqrtBackward0>)
>>> sim.backward()
>>> print(sl.grad)
tensor([[-0.3086],
[-0.1543],
[0.7715]11)

>>> s1_2d = torch.tensor([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], requires_grad=True)
>>> s2_2d = torch.tensor([[3.0, 3.0], [4.0, 4.0], [-3.0, -3.0]11)
>>> sim = dtw(sl_2d, s2_2d, be="pytorch")
>>> print(sim)
tensor(9.1652, grad_fn=<SqrtBackward®>)
>>> sim.backward()
>>> print(sl_2d.grad)
tensor([[-0.2182, -0.2182],
[-0.1091, -0.1091],
[©.5455, ©0.5455]])

3.7. tslearn.metrics 85

tslearn Documentation, Release 0.6.3

3.7.6 tslearn.metrics.dtw_path

tslearn.metrics.dtw_path(sl, s2, global_constraint=None, sakoe_chiba_radius=None,
itakura_max_slope=None, be=None)

Compute Dynamic Time Warping (DTW) similarity measure between (possibly multidimensional) time series
and return both the path and the similarity.

DTW is computed as the Euclidean distance between aligned time series, i.e., if 7 is the alignment path:

prw(x,Y) = [3 (X V)2
(i,j)em

It is not required that both time series share the same size, but they must be the same dimension. DTW was
originally presented in [1] and is discussed in more details in our dedicated user-guide page.

Parameters

sl
[array-like, shape=(sz1, d) or (sz1,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.

s2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.

global_constraint
[{“itakura”, “sakoe_chiba”} or None (default: None)] Global constraint to restrict admissible
paths for DTW.

sakoe_chiba_radius

[int or None (default: None)] Radius to be used for Sakoe-Chiba band global constraint. The
Sakoe-Chiba radius corresponds to the parameter § mentioned in [1], it controls how far in
time we can go in order to match a given point from one time series to a point in another
time series. If None and global_constraint is set to “sakoe_chiba”, a radius of 1 is used. If
both sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer
which constraint to use among the two. In this case, if global_constraint corresponds to no
global constraint, a RuntimeWarning is raised and no global constraint is used.

itakura_max_slope
[float or None (default: None)] Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope of 2. is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which
constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

list of integer pairs
Matching path represented as a list of index pairs. In each pair, the first index corresponds
to s1 and the second one corresponds to s2.

float
Similarity score

86 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

See also:
dtw
Get only the similarity score for DTW

cdist_dtw
Cross similarity matrix between time series datasets

dtw_path_from_metric
Compute a DTW using a user-defined distance metric

References

(1]

Examples

>>> path, dist = dtw_path([1, 2, 3], [1., 2., 2., 3.1)
>>> path

[0, ®, (1, 1, (1, 2), (2, 3)]

>>> dist

0.0

>>> dtw_path([1, 2, 31, [1., 2., 2., 3., 4.1)[1]

1.0

Examples using tslearn.metrics.dtw_path

» Longest Common Subsequence
* Canonical Time Warping

* Dynamic Time Warping

3.7.7 tslearn.metrics.dtw_path_from_metric

tslearn.metrics.dtw_path_from_metric(s/, s2=None, metric='euclidean’', global_constraint=None,
sakoe_chiba_radius=None, itakura_max_slope=None, be=None,
®lwds)

Compute Dynamic Time Warping (DTW) similarity measure between (possibly multidimensional) time series
using a distance metric defined by the user and return both the path and the similarity.

Similarity is computed as the cumulative cost along the aligned time series.

It is not required that both time series share the same size, but they must be the same dimension. DTW was
originally presented in [1].

Valid values for metric are the same as for scikit-learn pairwise_distances functioni.e. a string (e.g. “euclidean”,
“sqeuclidean”, “hamming”) or a function that is used to compute the pairwise distances. See scikit and scipy
documentations for more information about the available metrics.

Parameters

3.7. tslearn.metrics 87

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html
https://scikit-learn.org/stable/modules/metrics.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html

tslearn Documentation, Release 0.6.3

sl
[array-like, shape=(sz1, d) or (sz1,) if metric!="precomputed”, (sz1, sz2) otherwise] A time
series or an array of pairwise distances between samples. If shape is (sz1,), the time series
is assumed to be univariate.

s2
[array-like, shape=(sz2, d) or (sz2,), optional (default: None)] A second time series, only
allowed if metric != “precomputed”. If shape is (sz2,), the time series is assumed to be
univariate.

metric

[string or callable (default: “euclidean”)] Function used to compute the pairwise distances
between each points of s/ and s2.

If metric is “precomputed”, s/ is assumed to be a distance matrix.

If metric is an other string, it must be one of the options compatible with
sklearn.metrics.pairwise_distances.

Alternatively, if metric is a callable function, it is called on pairs of rows of s/ and s2. The
callable should take two 1 dimensional arrays as input and return a value indicating the dis-
tance between them.

global_constraint
[{“itakura”, “sakoe_chiba”} or None (default: None)] Global constraint to restrict admissible
paths for DTW.

sakoe_chiba_radius

[int or None (default: None)] Radius to be used for Sakoe-Chiba band global constraint. The
Sakoe-Chiba radius corresponds to the parameter § mentioned in [1], it controls how far in
time we can go in order to match a given point from one time series to a point in another
time series. If None and global_constraint is set to “sakoe_chiba”, a radius of 1 is used. If
both sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer
which constraint to use among the two. In this case, if global_constraint corresponds to no
global constraint, a RuntimeWarning is raised and no global constraint is used.

itakura_max_slope
[float or None (default: None)] Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope of 2. is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which
constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

**kwds
Additional arguments to pass to sklearn pairwise_distances to compute the pairwise dis-
tances.

Returns

list of integer pairs
Matching path represented as a list of index pairs. In each pair, the first index corresponds
to s1 and the second one corresponds to s2.

88 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

float
Similarity score (sum of metric along the wrapped time series).

See also:

dtw_path
Get both the matching path and the similarity score for DTW

Notes

By using a squared euclidean distance metric as shown above, the output path is the same as the one obtained by
using dtw_path but the similarity score is the sum of squared distances instead of the euclidean distance.

References

(1]

Examples

Lets create 2 numpy arrays to wrap:

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> sl, s2 = rng.rand(5, 2), rng.rand(6, 2)

The wrapping can be done by passing a string indicating the metric to pass to scikit-learn pairwise_distances:

>>> dtw_path_from_metric(sl, s2,
e metric="sqeuclidean")
(Lo, ®, 0, D, (1, 2), 2, 3), 3, 4, (4, 51, 1.117...)

Or by defining a custom distance function:

>>> sgeuclidean = lambda x, y: np.sum((x-y)**2)
>>> dtw_path_from_metric(sl, s2, metric=sqeuclidean)
([0, ®, O, 1, 1, 2, 2, 3), 3, 4, 4, 5], 1.117...)

Or by using a precomputed distance matrix as input:

>>> from sklearn.metrics.pairwise import pairwise_distances

>>> dist_matrix = pairwise_distances(sl, s2, metric="sgeuclidean")
>>> dtw_path_from_metric(dist_matrix,

Joc metric="precomputed")

([Co, O, O, 1, (1, 2), 2, 3, @3, 4, 4, 51, 1.117...)

3.7. tslearn.metrics 89

tslearn Documentation, Release 0.6.3

Examples using tslearn.metrics.dtw_path_from_metric

e DTW computation with a custom distance metric

3.7.8 tslearn.metrics.dtw_limited_warping_length

tslearn.metrics.dtw_limited_warping_length(sl/, s2, max_length, be=None)

Compute Dynamic Time Warping (DTW) similarity measure between (possibly multidimensional) time series
under an upper bound constraint on the resulting path length and return the similarity cost.

DTW is computed as the Euclidean distance between aligned time series, i.e., if 7 is the optimal alignment path:

DIW(X,Y)= | Y [Xi—Y;|?

(i,9)€m
Note that this formula is still valid for the multivariate case.

It is not required that both time series share the same size, but they must be the same dimension. DTW was
originally presented in [1]. This constrained-length variant was introduced in [2]. Both bariants are discussed in
more details in our dedicated user-guide page

Parameters

sl
[array-like, shape=(sz1, d) or (szl,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.

s2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.

max_length
[int] Maximum allowed warping path length. If greater than len(sl) + len(s2), then it is
equivalent to unconstrained DTW. If lower than max(len(s1), len(s2)), no path can be found
and a ValueError is raised.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

float
Similarity score

See also:
dtw
Get the similarity score for DTW

dtw_path_limited_warping_length
Get both the warping path and the similarity score for DTW with limited warping path length

90

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

References

(11, [2]

Examples

>>> dtw_limited_warping_length([1, 2, 3], [1., 2., 2., 3.1, 5)
0.0

>>> dtw_limited_warping_length([1, 2, 3], [1., 2., 2., 3., 4.1, 5)
1.0

3.7.9 tslearn.metrics.dtw_path_limited_warping_length

tslearn.metrics.dtw_path_limited_warping_length(s/, s2, max_length, be=None)

Compute Dynamic Time Warping (DTW) similarity measure between (possibly multidimensional) time series
under an upper bound constraint on the resulting path length and return the path as well as the similarity cost.

DTW is computed as the Euclidean distance between aligned time series, i.e., if 7 is the optimal alignment path:

pTW(x,Y) = [S X -2
(i,j)em

Note that this formula is still valid for the multivariate case.

It is not required that both time series share the same size, but they must be the same dimension. DTW was
originally presented in [1]. This constrained-length variant was introduced in [2]. Both variants are discussed in
more details in our dedicated user-guide page

Parameters

sl
[array-like, shape=(szl, d) or (sz1,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.

s2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.

max_length
[int] Maximum allowed warping path length. If greater than len(sl) + len(s2), then it is
equivalent to unconstrained DTW. If lower than max(len(s1), len(s2)), no path can be found
and a ValueError is raised.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

list of integer pairs
Optimal path

float
Similarity score

3.7. tslearn.metrics 91

tslearn Documentation, Release 0.6.3

See also:

dtw_limited_warping_length
Get the similarity score for DTW with limited warping path length

dtw_path

Get both the matching path and the similarity score for DTW

References

(11, [2]

Examples

>>> path, cost = dtw_path_limited_warping_length([1, 2, 3],

>>> cost
0.0
>>> path

[1., 2., 2., 3.1, 5)

[, 0, (1, 1, 1, 2), (2, 3]
>>> path, cost = dtw_path_limited_warping_length([1l, 2, 3],

>>> cost
1.0
>>> path

[1., 2., 2., 3., 4.1, 5

(@, ®, 1, 1, @, 25, @, 3, 2, D]

3.7.10 tslearn.metrics.subsequence_path

tslearn.metrics.subsequence_path(acc_cost_mat, idx_path_end, be=None)

Compute the optimal path through an accumulated cost matrix given the endpoint of the sequence.

Parameters

acc_cost_mat: array-like, shape=(sz1, sz2)

Accumulated cost matrix comparing subsequence from a longer sequence.

idx_path_end: int

be

Returns

The end position of the matched subsequence in the longer sequence.

[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

path: list of tuples of integer pairs

See also:

Matching path represented as a list of index pairs. In each pair, the first index corresponds to
subseq and the second one corresponds to longseq. The startpoint of the Path is Py = (0, 7)
and it ends at Py, = (len(subseq) — 1, idz_path_end)

92

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

dtw_subsequence_path
Get the similarity score for DTW

subsequence_cost_matrix
Calculate the required cost matrix

Examples

>>> acc_cost_mat = numpy.array([[1l., 0., 0., 1., 4.7,
e [5., 1., 1., 0., 1.1D

>>> # calculate the globally optimal path

>>> optimal_end_point = numpy.argmin(acc_cost_mat[-1, :])
>>> path = subsequence_path(acc_cost_mat, optimal_end_point)
>>> path

[0, 2), (1, 3)]

Examples using tslearn.metrics.subsequence_path

o sDTW multi path matching

3.7.11 tslearn.metrics.subsequence_cost_matrix

tslearn.metrics.subsequence_cost_matrix(subseq, longseq, be=None)
Compute the accumulated cost matrix score between a subsequence and a reference time series.

Parameters

subseq
[array-like, shape=(sz1, d) or (sz1,)] Subsequence time series. If shape is (szl1,), the time
series is assumed to be univariate.

longseq
[array-like, shape=(sz2, d) or (sz2,)] Reference time series. If shape is (5z2,), the time series
is assumed to be univariate.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

mat
[array-like, shape=(sz1, sz2)] Accumulated cost matrix.

3.7. tslearn.metrics 93

tslearn Documentation, Release 0.6.3

Examples using tslearn.metrics.subsequence_cost_matrix

o sDTW multi path matching

3.7.12 tslearn.metrics.dtw_subsequence_path

tslearn.metrics.dtw_subsequence_path (subseq, longseq, be=None)

Compute sub-sequence Dynamic Time Warping (DTW) similarity measure between a (possibly multidimen-
sional) query and a long time series and return both the path and the similarity.

DTW is computed as the Euclidean distance between aligned time series, i.e., if 7 is the alignment path:

DIW(X,Y)= | Y [Xi—Y;|?

(i.j)em

Compared to traditional DTW, here, border constraints on admissible paths 7 are relaxed such that w9 = (0, 7)
and 7, = (N — 1,7) where L is the length of the considered path and N is the length of the subsequence time
series.

It is not required that both time series share the same size, but they must be the same dimension. This imple-
mentation finds the best matching starting and ending positions for subseq inside longseq.

Parameters

subseq
[array-like, shape=(sz1, d) or (sz1,)] A query time series. If shape is (sz1,), the time series
is assumed to be univariate.

longseq
[array-like, shape=(sz2, d) or (sz2,)] A reference (supposed to be longer than subseq) time
series. If shape is (sz2,), the time series is assumed to be univariate.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

list of integer pairs
Matching path represented as a list of index pairs. In each pair, the first index corresponds
to subseq and the second one corresponds to longseq.

float
Similarity score

See also:
dtw
Get the similarity score for DTW

subsequence_cost_matrix
Calculate the required cost matrix

subsequence_path
Calculate a matching path manually

94 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

Examples

>>> path, dist = dtw_subsequence_path([2., 3.1, [1., 2., 2., 3., 4.])
>>> path

[0, 2), (1, 3)]

>>> dist

0.0

3.7.13 tslearn.metrics.lcss

tslearn.metrics.less(sl, s2, eps=1.0, global_constraint=None, sakoe_chiba_radius=None,
itakura_max_slope=None, be=None)

Compute the Longest Common Subsequence (LCSS) similarity measure between (possibly multidimensional)
time series and return the similarity.

LCSS is computed by matching indexes that are met up until the eps threshold, so it leaves some points unmatched
and focuses on the similar parts of two sequences. The matching can occur even if the time indexes are different.
One can set additional constraints to the set of acceptable paths: the Sakoe-Chiba band which is parametrized
by a radius or the Itakura parallelogram which is parametrized by a maximum slope. Both these constraints
consists in forcing paths to lie close to the diagonal. To retrieve a meaningful similarity value from the length of
the longest common subsequence, the percentage of that value regarding the length of the shortest time series is
returned.

According to this definition, the values returned by LCSS range from O to 1, the highest value taken when two
time series fully match, and vice-versa. It is not required that both time series share the same size, but they must
be the same dimension. LCSS was originally presented in [1] and is discussed in more details in our dedicated
user-guide page.

Parameters

sl
[array-like, shape=(sz1, d) or (szl,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.

s2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.

eps
[float (default: 1.)] Maximum matching distance threshold.

global_constraint
[{“itakura”, “sakoe_chiba”} or None (default: None)| Global constraint to restrict admissible
paths for LCSS.

sakoe_chiba_radius

[int or None (default: None)] Radius to be used for Sakoe-Chiba band global constraint. The
Sakoe-Chiba radius corresponds to the parameter § mentioned in [1], it controls how far in
time we can go in order to match a given point from one time series to a point in another
time series. If None and global_constraint is set to “sakoe_chiba”, a radius of 1 is used. If
both sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer
which constraint to use among the two. In this case, if global_constraint corresponds to no
global constraint, a RuntimeWarning is raised and no global constraint is used.

itakura_max_slope
[float or None (default: None)] Maximum slope for the Itakura parallelogram constraint.

3.7. tslearn.metrics 95

tslearn Documentation, Release 0.6.3

If None and global_constraint is set to “itakura”, a maximum slope of 2. is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which
constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

float
Similarity score

See also:

lcss_path
Get both the matching path and the similarity score for LCSS

References

(1]

Examples

>>> less([1, 2, 31, [1., 2., 2., 3.1)

1.0

>>> less([1, 2, 31, [1., 2., 2., 4., 7.1)

1.0

>>> less([1, 2, 3], [1., 2., 2., 2., 3.], eps=0)
1.0

>>> less([1, 2, 3], [-2., 5., 7.], eps=3)
0.6666666666666666

3.7.14 tslearn.metrics.lcss_path

tslearn.metrics.lcss_path(sl, s2, eps=1, global_constraint=None, sakoe_chiba_radius=None,

itakura_max_slope=None, be=None)

Compute the Longest Common Subsequence (LCSS) similarity measure between (possibly multidimensional)
time series and return both the path and the similarity.

LCSS is computed by matching indexes that are met up until the eps threshold, so it leaves some points unmatched
and focuses on the similar parts of two sequences. The matching can occur even if the time indexes are different.
One can set additional constraints to the set of acceptable paths: the Sakoe-Chiba band which is parametrized by
aradius or the Itakura parallelogram which is parametrized by a maximum slope. Both these constraints consists
in forcing paths to lie close to the diagonal.

To retrieve a meaningful similarity value from the length of the longest common subsequence, the percentage of
that value regarding the length of the shortest time series is returned.

According to this definition, the values returned by LCSS range from O to 1, the highest value taken when two
time series fully match, and vice-versa. It is not required that both time series share the same size, but they must

96

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

be the same dimension. LCSS was originally presented in [1] and is discussed in more details in our dedicated

user-guide page.
Parameters

s1
[array-like, shape=(szl, d) or (szl,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.

s2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.

eps
[float (default: 1.)] Maximum matching distance threshold.

global_constraint
[{*“itakura”, “sakoe_chiba”} or None (default: None)] Global constraint to restrict admissible
paths for LCSS.

sakoe_chiba_radius

[int or None (default: None)] Radius to be used for Sakoe-Chiba band global constraint. The
Sakoe-Chiba radius corresponds to the parameter § mentioned in [1], it controls how far in
time we can go in order to match a given point from one time series to a point in another
time series. If None and global_constraint is set to “sakoe_chiba”, a radius of 1 is used. If
both sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer
which constraint to use among the two. In this case, if global_constraint corresponds to no
global constraint, a RuntimeWarning is raised and no global constraint is used.

itakura_max_slope
[float or None (default: None)] Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope of 2. is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which
constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

list of integer pairs
Matching path represented as a list of index pairs. In each pair, the first index corresponds
to s1 and the second one corresponds to s2

float
Similarity score

See also:
lcss
Get only the similarity score for LCSS

lcss_path_from_metric
Compute LCSS using a user-defined distance metric

3.7. tslearn.metrics

97

tslearn Documentation, Release 0.6.3

References

(1]

Examples

>>> path, sim = lcss_path([1., 2., 3.1, [1., 2., 2., 3.1)
>>> path

(O, 1, 1, 2>, 2, 3]

>>> sim

1.0

>>> lcss_path([1., 2., 3.1, [1., 2., 2., 4.]1)[1]

1.0

Examples using tslearn.metrics.lcss_path

* Longest Common Subsequence

3.7.15 tslearn.metrics.lcss_path_from_metric

tslearn.metrics.lcss_path_from metric(sl/, s2=None, eps=1, metric='euclidean', global_constraint=None,

sakoe_chiba_radius=None, itakura_max_slope=None, be=None,
**hwds)

Compute the Longest Common Subsequence (LCSS) similarity measure between (possibly multidimensional)
time series using a distance metric defined by the user and return both the path and the similarity.

Having the length of the longest commom subsequence between two time series, the similarity is computed as
the percentage of that value regarding the length of the shortest time series.

It is not required that both time series share the same size, but they must be the same dimension. LCSS was
originally presented in [1].

Valid values for metric are the same as for scikit-learn pairwise_distances functioni.e. a string (e.g. “euclidean”,
“sqeuclidean”, “hamming”) or a function that is used to compute the pairwise distances. See scikit and scipy
documentations for more information about the available metrics.

Parameters

sl
[array-like, shape=(sz1, d) or (sz1,) if metric!="precomputed”, (sz1, sz2) otherwise] A time
series or an array of pairwise distances between samples. If shape is (sz1,), the time series
is assumed to be univariate.

s2
[array-like, shape=(sz2, d) or (sz2,), optional (default: None)] A second time series, only
allowed if metric != “precomputed”. If shape is (sz2,), the time series is assumed to be
univariate.

eps
[float (default: 1.)] Maximum matching distance threshold.

metric
[string or callable (default: “euclidean”)] Function used to compute the pairwise distances

98

Chapter 3. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html
https://scikit-learn.org/stable/modules/metrics.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html

tslearn Documentation, Release 0.6.3

between each points of s/ and s2. If metric is “precomputed”, s/ is assumed to be a dis-
tance matrix. If metric is an other string, it must be one of the options compatible with
sklearn.metrics.pairwise_distances. Alternatively, if metric is a callable function, it is called
on pairs of rows of s/ and s2. The callable should take two 1 dimensional arrays as input and
return a value indicating the distance between them.

global_constraint
[{“itakura”, “sakoe_chiba”} or None (default: None)| Global constraint to restrict admissible
paths for LCSS.

sakoe_chiba_radius

[int or None (default: None)] Radius to be used for Sakoe-Chiba band global constraint. The
Sakoe-Chiba radius corresponds to the parameter § mentioned in [1], it controls how far in
time we can go in order to match a given point from one time series to a point in another
time series. If None and global_constraint is set to “sakoe_chiba”, a radius of 1 is used. If
both sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer
which constraint to use among the two. In this case, if global_constraint corresponds to no
global constraint, a RuntimeWarning is raised and no global constraint is used.

itakura_max_slope
[float or None (default: None)] Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope of 2. is used. If both
sakoe_chiba_radius and itakura_max_slope are set, global_constraint is used to infer which
constraint to use among the two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is used.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

**kwds
Additional arguments to pass to sklearn pairwise_distances to compute the pairwise dis-
tances.

Returns

list of integer pairs
Matching path represented as a list of index pairs. In each pair, the first index corresponds
to s1 and the second one corresponds to s2.

float
Similarity score.

See also:
Icss
Get only the similarity score for LCSS

lcss_path
Get both the matching path and the similarity score for LCSS

3.7. tslearn.metrics 99

tslearn Documentation, Release 0.6.3

Notes

By using a squared euclidean distance metric as shown above, the output path and similarity is the same as the
one obtained by using lcss_path (which uses the euclidean distance) simply because with the sum of squared
distances the matching threshold is still not reached. Also, contrary to Dynamic Time Warping and variants, an
LCSS path does not need to be contiguous.

References

(1]

Examples

Lets create 2 numpy arrays to wrap:

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> sl, s2 = rng.rand(5, 2), rng.rand(6, 2)

The wrapping can be done by passing a string indicating the metric to pass to scikit-learn pairwise_distances:

>>> lcss_path_from_metric(sl, s2,
metric="sqeuclidean")

([, 1, @, 25, @, 3, 3, 49, ¢, 5], 1.O®

Or by defining a custom distance function:

>>> sgeuclidean = lambda x, y: np.sum((x-y)**2)
>>> lcss_path_from_metric(sl, s2, metric=sgeuclidean)

([, 1, @, 2, @2, 3, 3, 9, ¢, 5], 1.O®

Or by using a precomputed distance matrix as input:

>>> from sklearn.metrics.pairwise import pairwise_distances
>>> dist_matrix = pairwise_distances(sl, s2, metric="sqgeuclidean")
>>> lcss_path_from_metric(dist_matrix,

metric="precomputed")

(0, 1, @1, 25, @, 3, 3, 9, ¢, 5], 1.O®

Examples using tslearn.metrics.lcss_path_from_metric

* Longest Commom Subsequence with a custom distance metric

100

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

3.7.16 tslearn.metrics.gak

tslearn.metrics.gak(s/, s2, sigma=1.0, be=None)

Compute Global Alignment Kernel (GAK) between (possibly multidimensional) time series and return it.

It is not required that both time series share the same size, but they must be the same dimension. GAK was
originally presented in [1]. This is a normalized version that ensures that k(x,) = 1 forall z and k(x, y) € [0, 1]

forall z,y.
Parameters
s1
[array-like, shape=(szl, d) or (szl,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.
s2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.
sigma
[float (default 1.)] Bandwidth of the internal gaussian kernel used for GAK.
be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.
Returns
float
Kernel value
See also:
cdist_gak

Compute cross-similarity matrix using Global Alignment kernel

References

(1]

Examples

>>> gak([1, 2, 31, [1., 2., 2., 3.], sigma=2.)
0.839...

>>> gak([1, 2, 3], [1., 2., 2., 3., 4.1)
0.273...

3.7. tslearn.metrics 101

tslearn Documentation, Release 0.6.3

3.7.17 tslearn.metrics.soft_dtw

tslearn.metrics.soft_dtw(ssl, ts2, gamma=1.0, be=None, compute_with_backend=False)

Compute Soft-DTW metric between two time series.

Soft-DTW was originally presented in [1] and is discussed in more details in our user-guide page on DTW and
its variants.

Soft-DTW is computed as:

soft-DTW,(X,Y) =min” > [|X;, ;|
(i,4)em

where min” is the soft-min operator of parameter .

In the limit case ¥ = 0, min” reduces to a hard-min operator and soft-DTW is defined as the square of the DTW
similarity measure.

Parameters

tsl
[array-like, shape=(szl, d) or (sz1,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.

ts2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.

gamma
[float (default 1.)] Gamma parameter for Soft-DTW.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

compute_with_backend
[bool, default=False] This parameter has no influence when the NumPy backend is used.
When a backend different from NumPy is used (cf parameter be): If True, the computation
is done with the corresponding backend. If False, a conversion to the NumPy backend can
be used to accelerate the computation.

Returns

float
Similarity

See also:

cdist_soft_dtw
Cross similarity matrix between time series datasets

102

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

References

(1]

Examples

>>> soft_dtw([1, 2, 2, 3],
[1., 2., 3., 4.7,
gamma=1.)
-0.89...
>>> soft_dtw([1, 2, 3, 3],

[1., 2., 2.1, 3.2],
gamma=0.01)
0.089...

The PyTorch backend can be used to compute gradients:

>>> import torch
>>> tsl = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> ts2 = torch.tensor([[3.0], [4.0], [-3.0]1D)
>>> sim = soft_dtw(tsl, ts2, gamma=1.0, be="pytorch", compute_with_backend=True)
>>> print(sim)
tensor(41.1876, dtype=torch.float64, grad_fn=<SelectBackward®>)
>>> sim.backward()
>>> print(tsl.grad)
tensor([[-4.0001],

[-2.2852],

[10.1643]])

>>> tsl_2d = torch.tensor([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], requires_grad=True)
>>> ts2_2d = torch.tensor([[3.0, 3.0], [4.0, 4.0], [-3.0, -3.0]1)
>>> sim = soft_dtw(tsl_2d, ts2_2d, gamma=1.0, be="pytorch", compute_with_
—backend=True)
>>> print(sim)
tensor(83.2951, dtype=torch.float64, grad_fn=<SelectBackward®>)
>>> sim.backward()
>>> print(tsl_2d.grad)
tensor([[-4.0000, -4.0000],
[-2.0261, -2.0261],
[10.0206, 10.0206]1)

3.7.18 tslearn.metrics.soft_dtw_alignment

tslearn.metrics.soft_dtw_alignment (ssl, ts2, gamma=1.0, be=None, compute_with_backend=False)
Compute Soft-DTW metric between two time series and return both the similarity measure and the alignment
matrix.

Soft-DTW was originally presented in [1] and is discussed in more details in our user-guide page on DTW and
its variants.

3.7. tslearn.metrics 103

tslearn Documentation, Release 0.6.3

Soft-DTW is computed as:

soft-DTW,,(X,Y) =min? Y | X;, Y|
(i,5)em

where min” is the soft-min operator of parameter ~.

In the limit case v = 0, min” reduces to a hard-min operator and soft-DTW is defined as the square of the DTW
similarity measure.

Parameters

tsl
[array-like, shape=(sz1, d) or (sz1,)] A time series. If shape is (szl,), the time series is
assumed to be univariate.

ts2
[array-like, shape=(sz2, d) or (sz2,)] Another time series. If shape is (sz2,), the time series
is assumed to be univariate.

gamma
[float (default 1.)] Gamma parameter for Soft-DTW.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

compute_with_backend
[bool, default=False] This parameter has no influence when the NumPy backend is used.
When a backend different from NumPy is used (cf parameter be): If True, the computation
is done with the corresponding backend. If False, a conversion to the NumPy backend can
be used to accelerate the computation.

Returns

array-like, shape=(sz1, sz2)
Soft-alignment matrix

float
Similarity

See also:

soft_dtw
Returns soft-DTW score alone

References

(1]

104 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

Examples

>>> a, dist = soft_dtw_alignment([1, 2, 2, 3],
[1., 2., 3., 4.1,
S0 ¢ gamma=1.)
>>> dist
-0.89...
>>> a
array([[1.00...e+00, 1.88...e-01, 2.83...e-04, 4.19...e-11]7,
[3.40...e-01, 8.17...e-01, 8.87...e-02, 3.94...e-05],
[5.05...e-02, 7.09...e-01, 5.30...e-01, 6.98...e-03],
[1.37...e-04, 1.31...e-01, 7.30...e-01, 1.00...e+00]1]1)

The PyTorch backend can be used to compute gradients:

>>> import torch
>>> tsl = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> ts2 = torch.tensor([[3.0], [4.0], [-3.0]1D)
>>> path, sim = soft_dtw_alignment(tsl, ts2, gamma=1.0, be="pytorch", compute_with_
—.backend=True)
>>> print(sim)
tensor(41.1876, dtype=torch.float64, grad_fn=<AsStridedBackward0>)
>>> sim.backward()
>>> print(tsl.grad)
tensor([[-4.0001],
[-2.2852],
[10.1643]])

>>> tsl_2d = torch.tensor([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], requires_grad=True)
>>> ts2_2d = torch.tensor([[3.0, 3.0], [4.0, 4.0], [-3.0, -3.0]1D
>>> path, sim = soft_dtw_alignment(tsl_2d, ts2_2d, gamma=1.0, be="pytorch", compute_
—with_backend=True)
>>> print(sim)
tensor(83.2951, dtype=torch.float64, grad_fn=<AsStridedBackward®>)
>>> sim.backward()
>>> print(tsl_2d.grad)
tensor([[-4.0000, -4.0000],
[-2.0261, -2.0261],
[10.0206, 10.0206]1)

3.7. tslearn.metrics 105

tslearn Documentation, Release 0.6.3

Examples using tslearn.metrics.soft_dtw_alignment

* Soft Dynamic Time Warping

3.7.19 tslearn.metrics.cdist_soft diw

tslearn.metrics.cdist_soft_dtw(datasetl, dataset2=None, gamma=1.0, be=None,
compute_with_backend=False)

Compute cross-similarity matrix using Soft-DTW metric.

Soft-DTW was originally presented in [1] and is discussed in more details in our user-guide page on DTW and
its variants.

Soft-DTW is computed as:

soft-DTW,(X,Y) =min” > [|X;,Y;|
(irj)€m

where min” is the soft-min operator of parameter .

In the limit case v = 0, min” reduces to a hard-min operator and soft-DTW is defined as the square of the DTW
similarity measure.

Parameters

datasetl
[array-like, shape=(n_ts1, sz1, d) or (n_ts1, sz1) or (sz1,)] A dataset of time series. If shape
is (n_ts1, sz1), the dataset is composed of univariate time series. If shape is (sz1,), the dataset
is composed of a unique univariate time series.

dataset2
[None or array-like, shape=(n_ts2, sz2, d) or (n_ts2, sz2) or (sz2,) (default: None)] Another
dataset of time series. If None, self-similarity of dataset] is returned. If shape is (n_ts2, sz2),
the dataset is composed of univariate time series. If shape is (sz2,), the dataset is composed
of a unique univariate time series.

gamma
[float (default 1.)] Gamma parameter for Soft-DTW.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

compute_with_backend
[bool, default=False] This parameter has no influence when the NumPy backend is used.
When a backend different from NumPy is used (cf parameter be): If True, the computation
is done with the corresponding backend. If False, a conversion to the NumPy backend can
be used to accelerate the computation.

Returns

array-like, shape=(n_ts1, n_ts2)
Cross-similarity matrix.

See also:

106 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

soft_dtw
Compute Soft-DTW

cdist_soft_dtw_normalized
Cross similarity matrix between time series datasets using a normalized version of Soft-DTW

References

(1]

Examples

>>> cdist_soft_dtw([[1, 2, 2, 3], [1l., 2., 3., 4.]], gamma=.01)

array([[-0.01098612, 1. 1,
[1. , O. 11
>>> cdist_soft_dtw([[1, 2, 2, 3], [1., 2., 3., 4.11,
[cy, 2, 2, 31, [1., 2., 3., 4.]1], gamma=.01)
array([[-0.01098612, 1. 1,
[1. , O. 11

The PyTorch backend can be used to compute gradients:

>>> import torch
>>> datasetl = torch.tensor([[[1.0], [2.0], [3.011, [[1.0], [2.0], [3.0]111,.
—requires_grad=True)
>>> dataset2 = torch.tensor([[[3.0], [4.0], [-3.01]1, [[3.0], [4.0]1, [-3.011D
>>> sim_mat = cdist_soft_dtw(datasetl, dataset2, gamma=1.0, be="pytorch", compute_
—with_backend=True)
>>> print(sim_mat)
tensor([[41.1876, 41.1876],
[41.1876, 41.1876]], grad_fn=<CopySlices>)
>>> sim = sim_mat[0, O]
>>> sim.backward()
>>> print(datasetl.grad)
tensor([[[-4.0001],
[-2.2852],
[10.1643]],

.0000],
.0000],
.0000111)

L B e W s |
(==~

3.7.20 tslearn.metrics.cdist_soft dtw normalized

tslearn.metrics.cdist_soft_dtw_normalized(datasetl, dataset2=None, gamma=1.0, be=None,
compute_with_backend=False)

Compute cross-similarity matrix using a normalized version of the Soft-DTW metric.

Soft-DTW was originally presented in [1] and is discussed in more details in our user-guide page on DTW and
its variants.

3.7. tslearn.metrics 107

tslearn Documentation, Release 0.6.3

Soft-DTW is computed as:

soft-DTW,,(X,Y) =min? Y | X;, Y|
(i,5)em

where min” is the soft-min operator of parameter ~.

In the limit case v = 0, min” reduces to a hard-min operator and soft-DTW is defined as the square of the DTW
similarity measure.

This normalized version is defined as:
1
norm-soft-DTW., (X, Y) = soft- DTW,(X,Y) — 3 (soft-DTW., (X, X) + soft-DTW, (Y, Y))

and ensures that all returned values are positive and that norm-soft-DTW., (X, X') = 0.
Parameters

datasetl
[array-like, shape=(n_ts1, sz1, d) or (n_ts1, sz1) or (sz1,)] A dataset of time series. If shape
is (n_ts1, sz1), the dataset is composed of univariate time series. If shape is (sz1,), the dataset
is composed of a unique univariate time series.

dataset2
[None or array-like, shape=(n_ts2, sz2, d) or (n_ts2, sz2) or (sz2,) (default: None)] Another
dataset of time series. If None, self-similarity of dataset! is returned. If shape is (n_ts2, sz2),
the dataset is composed of univariate time series. If shape is (sz2,), the dataset is composed
of a unique univariate time series.

gamma
[float (default 1.)] Gamma parameter for Soft-DTW.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

compute_with_backend
[bool, default=False] This parameter has no influence when the NumPy backend is used.
When a backend different from NumPy is used (cf parameter be): If True, the computation
is done with the corresponding backend. If False, a conversion to the NumPy backend can
be used to accelerate the computation.

Returns

array-like, shape=(n_ts1, n_ts2)
Cross-similarity matrix.

See also:
soft_dtw
Compute Soft-DTW

cdist_soft_dtw
Cross similarity matrix between time series datasets using the unnormalized version of Soft-DTW

108 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

References

(1]

Examples

>>> time_series = np.random.randn(10, 15, 1)

>>> np.alltrue(cdist_soft_dtw_normalized(time_series) >= 0.)

True

>>> time_series2 = np.random.randn(4, 15, 1)

>>> np.alltrue(cdist_soft_dtw_normalized(time_series, time_series2) >= 0.)
True

The PyTorch backend can be used to compute gradients:

>>> import torch
>>> datasetl = torch.tensor([[[1.0], [2.0], [3.0]11, [[1.0], [2.0], [3.0]111,.
—requires_grad=True)
>>> dataset2 = torch.tensor([[[3.0], [4.0], [-3.01]1, [[3.0], [4.0]1, [-3.011D
>>> sim_mat = cdist_soft_dtw_normalized(datasetl, dataset2, gamma=1.0, be="pytorch",
<, compute_with_backend=True)
>>> print(sim_mat)
tensor([[42.0586, 42.0586],
[42.0586, 42.0586]], grad_fn=<AddBackward®>)
>>> sim = sim_mat[0, 0]
>>> sim.backward()
>>> print(datasetl.grad)
tensor([[[-3.5249],
[-2.2852],
[9.6891]],
[[6.0000],
[60.0000],
[60.0000]111)

3.7.21 tslearn.metrics.lb_envelope

tslearn.metrics.lb_envelope (s, radius=1, be=None)
Compute time series envelope as required by LB_Keogh.

LB_Keogh was originally presented in [1].
Parameters

ts
[array-like, shape=(sz, d) or (sz,)] Time series for which the envelope should be computed.
If shape is (sz,), the time series is assumed to be univariate.

radius
[int (default: 1)] Radius to be used for the envelope generation (the envelope at time index i
will be generated based on all observations from the time series at indices comprised between
i-radius and i+radius).

3.7. tslearn.metrics 109

tslearn Docume

ntation, Release 0.6.3

be

[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

envelope_down

[array-like, shape=(sz, d)] Lower-side of the envelope.

envelope_up

See also:

1b_keogh

[array-like, shape=(sz, d)] Upper-side of the envelope.

Compute LB_Keogh similarity

References

(1]

Examples

>>> tsl =

[1’ 2! 31 2! 1]

>>> env_low, env_up = lb_envelope(tsl, radius=1)
>>> env_low

array([[1

[1.
2.
[1.

[1

-1,
1,
1,
1,
1]

>>> env_up

array([[2
3
[3
[3
[2

-1,
1,
1,
-1,
1D

Examples using tslearn.metrics.1lb_envelope

* LB_Keogh

110

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

3.7.22 tslearn.metrics.lb_keogh

tslearn.metrics.lb_keogh(ts_query, ts_candidate=None, radius=1, envelope_candidate=None)
Compute LB_Keogh.

LB_Keogh was originally presented in [1].
Parameters

ts_query
[array-like, shape=(szl, 1) or (sz1,)] Univariate query time series to compare to the envelope
of the candidate.

ts_candidate
[None or array-like, shape=(sz2, 1) or (sz2,) (default: None)] Univariate candidate time se-
ries. None means the envelope is provided via envelope_candidate parameter and hence does
not need to be computed again.

radius
[int (default: 1)] Radius to be used for the envelope generation (the envelope at time in-
dex i will be generated based on all observations from the candidate time series at indices
comprised between i-radius and i+radius). Not used if ts_candidate is None.

envelope_candidate: pair of array-like (envelope_down, envelope_up) or None

(default: None)
Pre-computed envelope of the candidate time series. If set to None, it is computed based on
ts_candidate.

Returns

float
Distance between the query time series and the envelope of the candidate time series.

See also:

1b_envelope
Compute LB_Keogh-related envelope

Notes

This method requires a ts_query and ts_candidate (or envelope_candidate, depending on the call) to be of equal
size.

References

(1]

3.7. tslearn.metrics 111

tslearn Documentation, Release 0.6.3

Examples

>>> tsl = [1, 2, 3, 2, 1]

>>> ts2 = [0, 0, 0, 0, 0]

>>> env_low, env_up = lb_envelope(tsl, radius=1)
>>> 1b_keogh(ts_query=ts2,

e envelope_candidate=(env_low, env_up))
2.8284...
>>> lb_keogh(ts_query=ts2,
ts_candidate=tsl,
- radius=1)
2.8284...

Examples using tslearn.metrics.lb_keogh

* LB_Keogh

3.7.23 tslearn.metrics.sigma_gak

tslearn.metrics.sigma_gak(dataset, n_samples=100, random_state=None, be=None)
Compute sigma value to be used for GAK.

This method was originally presented in [1].
Parameters

dataset
[array-like, shape=(n_ts, sz, d) or (n_ts, sz1) or (sz,)] A dataset of time series. If shape is
(n_ts, sz), the dataset is composed of univariate time series. If shape is (sz,), the dataset is
composed of a unique univariate time series.

n_samples
[int (default: 100)] Number of samples on which median distance should be estimated.

random_state
[integer or numpy.RandomState or None (default: None)] The generator used to draw the
samples. If an integer is given, it fixes the seed. Defaults to the global numpy random
number generator.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

float
Suggested bandwidth (o) for the Global Alignment kernel.

See also:

gak
Compute Global Alignment kernel

112 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

cdist_gak
Compute cross-similarity matrix using Global Alignment kernel

References

(1]

Examples

>>> dataset = [[1, 2, 2, 31, [1., 2., 3., 4.]1]
>>> sigma_gak(dataset=dataset,

n_samples=200,

- random_state=0)

2.0...

3.7.24 tslearn.metrics.gamma_soft_dtw

tslearn.metrics.gamma_soft_dtw(dataset, n_samples=100, random_state=None, be=None)
Compute gamma value to be used for GAK/Soft-DTW.

This method was originally presented in [1].
Parameters

dataset
[array-like, shape=(n_ts, sz, d) or (n_ts, sz1) or (sz,)] A dataset of time series. If shape is
(n_ts, sz), the dataset is composed of univariate time series. If shape is (sz,), the dataset is
composed of a unique univariate time series.

n_samples
[int (default: 100)] Number of samples on which median distance should be estimated.

random_state
[integer or numpy.RandomState or None (default: None)] The generator used to draw the
samples. If an integer is given, it fixes the seed. Defaults to the global numpy random
number generator.

be
[Backend object or string or None] Backend. If be is an instance of the class NumPyBackend
or the string “numpy”, the NumPy backend is used. If be is an instance of the class PyTorch-
Backend or the string “pytorch”, the PyTorch backend is used. If be is None, the backend is
determined by the input arrays. See our dedicated user-guide page for more information.

Returns

float
Suggested -y parameter for the Soft-DTW.

See also:

sigma_gak
Compute sigma parameter for Global Alignment kernel

3.7. tslearn.metrics 113

tslearn Documentation, Release 0.6.3

References

(1]

Examples

>>> dataset = [[1, 2, 2, 31, [1., 2., 3., 4.]1]
>>> gamma_soft_dtw(dataset=dataset,
n_samples=200,

- random_state=0)

8.0...

3.7.25 tslearn.metrics.SoftDTWLossPyTorch

tslearn.metrics.SoftDTWLossPyTorch(gamma=1.0, normalize=False, dist_func=None)
Soft-DTW loss function in PyTorch.

Soft-DTW was originally presented in [1] and is discussed in more details in our user-guide page on DTW and
its variants.

Soft-DTW is computed as:
soft-DTW, (X, Y) =min” > d(X;,Y;)
(i,5)em

where d is a distance function or a dissimilarity measure supporting PyTorch automatic differentiation and min”
is the soft-min operator of parameter -y defined as:

n
min” (ay,...,a,) = f’ylogz e il
i=1

In the limit case y = 0, min” reduces to a hard-min operator. The soft-DTW is then defined as the square of the
DTW dissimilarity measure when d is the squared Euclidean distance.

Contrary to DTW, soft-DTW is not bounded below by zero, and we even have:
soft-DTW, (X,Y) = —oo when v — 400

In [2], new dissimilarity measures are defined, that rely on soft-DTW. In particular, soft-DTW divergence is
introduced to counteract the non-positivity of soft-DTW:

1
D, (X,Y) =soft-DTW, (X,Y) — = (soft-DTW, (X, X) + soft-DTW,, (Y, Y
gl el 9 ¥ ¥

This divergence has the advantage of being minimized for X = Y and being exactly 0 in that case.
Parameters

gamma
[float] Regularization parameter. It should be strictly positive. Lower is less smoothed (closer
to true DTW).

normalize
[bool] If True, the Soft-DTW divergence is used. The Soft-DTW divergence is always posi-
tive. Optional, default: False.

114 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

dist_func
[callable] Distance function or dissimilarity measure. It takes two input arguments of shape
(batch_size, ts_length, dim). It should support PyTorch automatic differentiation. Optional,
default: None If None, the squared Euclidean distance is used.

See also:

soft_dtw

Compute Soft-DTW metric between two time series.

cdist_soft_dtw

Compute cross-similarity matrix using Soft-DTW metric.

cdist_soft_dtw_normalized
Compute cross-similarity matrix using a normalized version of the Soft-DTW metric.

References

(11, [2]

Examples

>>> import torch

>>> from tslearn.metrics import SoftDTWLossPyTorch
>>> soft_dtw_loss = SoftDTWLossPyTorch(gamma=0.1)
>>> x = torch.zeros((4, 3, 2), requires_grad=True)
>>> y = torch.arange(0, 24).reshape(4, 3, 2)

>>> soft_dtw_loss_mean_value = soft_dtw_loss(x, y).mean()

>>> print(soft_dtw_loss_mean_value)
tensor(1081., grad_fn=<MeanBackward®>)
>>> soft_dtw_loss_mean_value.backward()

>>> print(x.grad.shape)

torch.Size([4,

>>> print(x.grad)

tensor([[[O.
[-1.
[-2.

LL =3
[-4.
[-5.

[[-6.
[-7.
[-8.

L =9
[-10.
[-11.

3, 2D
0000, -0.
0000, -1.
0000, -2.
0000, -3
0000, -4.
0000, -5.
0000, -6.
0000, -7.
0000, -8.
0000, -9.
0000, -10.
0000, -11.

50007,
5000],
500017,

.5000],

50007,
500011,

50001,
50007,
500011,

5000],
5000],
5000111

3.7. tslearn.metrics

115

tslearn Documentation, Release 0.6.3

Examples using tslearn.metrics.SoftDTWLossPyTorch

* Soft-DTW loss for PyTorch neural network

3.8 tslearn.neural _network
The tslearn.neural_network module contains multi-layer perceptron models for time series classification and

regression.

These are straight-forward adaptations of scikit-learn models.

Classes

TimeSeriesMLPClassifier([...]) A Multi-Layer Perceptron classifier for time series.
TimeSeriesMLPRegressor([hidden_layer_sizes, ...]) A Multi-Layer Perceptron regressor for time series.

3.8.1 tslearn.neural_network.TimeSeriesMLPClassifier

class tslearn.neural_network.TimeSeriesMLPClassifier (hidden_layer_sizes=(100,), activation="relu’,
* solver="adam’', alpha=0.0001,
batch_size='auto', learning_rate="constant’,
learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True,
random_state=None, tol=0.0001,
verbose=Fualse, warm_start=Fualse,
momentum=0.9, nesterovs_momentum=True,
early_stopping=False, validation_fraction=0.1,
beta_I1=0.9, beta_2=0.999, epsilon=1e-08,
n_iter_no_change=10, max_fun=15000)

A Multi-Layer Perceptron classifier for time series.
This class mainly reshapes data so that it can be fed to scikit-learn’s MLPClassifier.

It accepts the exact same hyper-parameters as MLPClassifier, check scikit-learn docs for a list of parameters
and attributes.

Notes

This method requires a dataset of equal-sized time series.

116 Chapter 3. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

tslearn Documentation, Release 0.6.3

Examples

>>> from tslearn.generators import random_walk_blobs

>>> X, y = random_walk_blobs(n_ts_per_blob=30, sz=16, d=2, n_blobs=3,
- random_state=0)

>>> mlp = TimeSeriesMLPClassifier(hidden_layer_sizes=(64, 64),

>>> mlp. fit (X, y)
TimeSeriesMLPClassifier(...)

>>> [c.shape for c in mlp.coefs_]
[(32, 64), (64, 64), (64, 3)]

>>> [c.shape for c in mlp.intercepts_]

[(64,), (64,), (3,)]

Methods

random_state=0)

fit(X,y)
get_metadata_routing()
get_params([deep])
partial_fit(X, y[, classes])

predict(X)
predict_log_proba(X)

predict_proba(X)
score(X, y[, sample_weight])

set_params(**params)
set_partial_fit_request(*[, classes])

set_score_request(*[, sample_weight])

Fit the model using X as training data and y as target
values

Get metadata routing of this object.

Get parameters for this estimator.

Update the model with a single iteration over the
given data.

Predict the class labels for the provided data

Predict the class log-probabilities for the provided
data

Predict the class probabilities for the provided data
Return the mean accuracy on the given test data and
labels.

Set the parameters of this estimator.

Request metadata passed to the partial fit
method.

Request metadata passed to the score method.

£it(X,)

Fit the model using X as training data and y as target values

Parameters

X

[array-like, shape (n_ts, sz, d)] Training data.

y

[array-like, shape (n_ts,) or (n_ts, dim_y)] Target values.

Returns

TimeSeriesMLPClassifier
The fitted estimator

get_metadata_routing()
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns

3.8. tslearn.neural_network

117

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

tslearn Documentation, Release 0.6.3

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params (deep=True)
Get parameters for this estimator.
Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and contained

subobjects that are estimators.
Returns

params
[dict] Parameter names mapped to their values.

partial_fit(X, y, classes=None)
Update the model with a single iteration over the given data.

Parameters
X
[{array-like, sparse matrix} of shape (n_samples, n_features)] The input data.
y
[array-like of shape (n_samples,)] The target values.
classes
[array of shape (n_classes,), default=None] Classes across all calls to partial_fit. Can be
obtained via np.unique(y_all), where y_all is the target vector of the entire dataset. This
argument is required for the first call to partial_fit and can be omitted in the subsequent
calls. Note that y doesn’t need to contain all labels in classes.
Returns
self
[object] Trained MLP model.
predict(X)
Predict the class labels for the provided data
Parameters
X

[array-like, shape (n_ts, sz, d)] Test samples.
Returns

array, shape = (n_ts,)
Array of predicted class labels

predict_log_proba(X)
Predict the class log-probabilities for the provided data

Parameters

X
[array-like, shape (n_ts, sz, d)] Test samples.

Returns

array, shape = (n_ts, n_classes)
Array of predicted class log-probabilities

118 Chapter 3. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

tslearn Documentation, Release 0.6.3

predict_proba(X)
Predict the class probabilities for the provided data

Parameters

X
[array-like, shape (n_ts, sz, d)] Test samples.

Returns

array, shape = (n_ts, n_classes)
Array of predicted class probabilities

score (X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X
[array-like of shape (n_samples, n_features)] Test samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight
[array-like of shape (n_samples,), default=None] Sample weights.

Returns

score
[float] Mean accuracy of self.predict(X) w.r.t. y.

set_params (**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters

*¥*params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

set_partial_fit_request(*, classes: bool | None | str = 'SUNCHANGEDS$") — TimeSeriesMLPClassifier
Request metadata passed to the partial_£fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

* True: metadata is requested, and passed to partial_£fit if provided. The request is ignored if meta-
data is not provided.

* False: metadata is not requested and the meta-estimator will not pass it to partial_fit.

3.8. tslearn.neural_network 119

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing

tslearn Documentation, Release 0.6.3

* None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

e str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

classes
[str, True, False, or None, default=sklearn.utils.metadata_routing. UNCHANGED] Meta-
data routing for classes parameter in partial_fit.

Returns
self
[object] The updated object.

set_score_request (*, sample_weight: bool | None | str = 'SUNCHANGEDS$'") — TimeSeriesMLPClassifier
Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

* True: metadata is requested, and passed to score if provided. The request is ignored if metadata is
not provided.

* False: metadata is not requested and the meta-estimator will not pass it to score.
* None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

e str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weight
[str, True, False, or None, default=sklearn.utils.metadata_routing. UNCHANGED] Meta-
data routing for sample_weight parameter in score.

Returns

120 Chapter 3. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

tslearn Documentation, Release 0.6.3

self
[object] The updated object.

3.8.2 tslearn.neural_network.TimeSeriesMLPRegressor

class tslearn.neural_network.TimeSeriesMLPRegressor (hidden_layer_sizes=(100,), activation="relu', *,
solver="adam’, alpha=0.0001,
batch_size='auto', learning_rate="constant’,
learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True,
random_state=None, tol=0.0001,
verbose=False, warm_start=False,
momentum=0.9, nesterovs_momentum=True,
early_stopping=False, validation_fraction=0.1,
beta_I1=0.9, beta_2=0.999, epsilon=1e-08,
n_iter_no_change=10, max_fun=15000)

A Multi-Layer Perceptron regressor for time series.
This class mainly reshapes data so that it can be fed to scikit-learn’s MLPRegressor.

It accepts the exact same hyper-parameters as MLPRegressor, check scikit-learn docs for a list of parameters
and attributes.

Notes

This method requires a dataset of equal-sized time series.

Examples

>>> mlp = TimeSeriesMLPRegressor(hidden_layer_sizes=(64, 64),
B random_state=0)

>>> mlp.fit(X=[[1, 2, 3], [1, 1.2, 3.21, [3, 2, 111,

.. y=[0, 0, 1])

TimeSeriesMLPRegressor(...)

>>> [c.shape for c in mlp.coefs_]

[(3, 64), (64, 64), (64, 1]

>>> [c.shape for c in mlp.intercepts_]

[(64’)1 (641)1 (11)]

3.8. tslearn.neural_network 121

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

tslearn Documentation, Release 0.6.3

Methods

fit(X,y) Fit the model using X as training data and y as target
values

get_metadata_routing() Get metadata routing of this object.

get_params([deep]) Get parameters for this estimator.

partial_fit(X,y) Update the model with a single iteration over the
given data.

predict(X) Predict the target for the provided data

score(X, y[, sample_weight]) Return the coefficient of determination of the predic-
tion.

set_params(**params) Set the parameters of this estimator.

set_score_request(*[, sample_weight]) Request metadata passed to the score method.

fit(X,y)
Fit the model using X as training data and y as target values
Parameters
X
[array-like, shape (n_ts, sz, d)] Training data.
y
[array-like, shape (n_ts,) or (n_ts, dim_y)] Target values.
Returns

TimeSeriesMLPRegressor
The fitted estimator

get_metadata_routing()
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.
Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params (deep=True)
Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

partial_fit(X, y)

Update the model with a single iteration over the given data.

Parameters

122 Chapter 3. API Reference

https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

tslearn Documentation, Release 0.6.3

x [{array-like, sparse matrix} of shape (n_samples, n_features)] The input data.
y
[ndarray of shape (n_samples,)] The target values.
Returns
self
[object] Trained MLP model.
predict (X)
Predict the target for the provided data
Parameters
X

[array-like, shape (n_ts, sz, d)] Test samples.
Returns

array, shape = (n_ts,) or (n_ts, dim_y)
Array of predicted targets

score (X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination R? is defined as (1 —), where u is the residual sum of squares ((y_true
- y_pred)** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
R? score of 0.0.

Parameters

X
[array-like of shape (n_samples, n_features)] Test samples. For some estimators this may be
a precomputed kernel matrix or a list of generic objects instead with shape (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the
fitting for the estimator.

Yy
[array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight
[array-like of shape (n_samples,), default=None] Sample weights.

Returns

score
[float] R? of self.predict(X) w.rt. y.

3.8. tslearn.neural_network 123

tslearn Documentation, Release 0.6.3

Notes

The R? score used when calling score on a regressor uses multioutput="uniform_average' from
version 0.23 to keep consistent with default value of r2_score (). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_params (**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

set_score_request (*, sample_weight: bool | None | str = 'SUNCHANGEDS$') — TimeSeriesMLPRegressor
Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.
set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

* True: metadata is requested, and passed to score if provided. The request is ignored if metadata is
not provided.

* False: metadata is not requested and the meta-estimator will not pass it to score.
* None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

* str: metadata should be passed to the meta-estimator with this given alias instead of the original
name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows
you to change the request for some parameters and not others.

New in version 1.3.

Note: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g.
used inside a Pipeline. Otherwise it has no effect.

Parameters

sample_weight
[str, True, False, or None, default=sklearn.utils.metadata_routing. UNCHANGED] Meta-
data routing for sample_weight parameter in score.

Returns

self
[object] The updated object.

124 Chapter 3. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

tslearn Documentation, Release 0.6.3

3.9 tslearn.neighbors

The tslearn.neighbors module gathers nearest neighbor algorithms using time series metrics.

Classes
KNeighborsTimeSeries([n_neighbors, metric, ...]) Unsupervised learner for implementing neighbor
searches for Time Series.
KNeighborsTimeSeriesClassifier(]...]) Classifier implementing the k-nearest neighbors vote for
Time Series.
KNeighborsTimeSeriesRegressor([n_neighbors, Classifier implementing the k-nearest neighbors vote for
..]) Time Series.

3.9.1 tslearn.neighbors.KNeighborsTimeSeries

class tslearn.neighbors.KNeighborsTimeSeries(n_neighbors=5, metric='dtw’', metric_params=None,
n_jobs=None, verbose=0)

Unsupervised learner for implementing neighbor searches for Time Series.
Parameters

n_neighbors
[int (default: 5)] Number of nearest neighbors to be considered for the decision.

metric
[{“dtw’, ‘softdtw’, ‘ctw’, ‘euclidean’, ‘sqeuclidean’, ‘cityblock’, ‘sax’} (default: ‘dtw’)] Met-
ric to be used at the core of the nearest neighbor procedure. DTW and SAX are described in
more detail in tslearn.metrics. When SAX is provided as a metric, the data is expected
to be normalized such that each time series has zero mean and unit variance. Other metrics
are described in scipy.spatial.distance doc.

metric_params
[dict or None (default: None)] Dictionary of metric parameters. For metrics that accept
parallelization of the cross-distance matrix computations, n_jobs and verbose keys passed in
metric_params are overridden by the n_jobs and verbose arguments. For ‘sax’ metric, these
are hyper-parameters to be passed at the creation of the SymbolicAggregateApproximation
object.

n_jobs
[int or None, optional (default=None)] The number of jobs to run in parallel for cross-
distance matrix computations. Ignored if the cross-distance matrix cannot be computed using
parallelization. None means 1 unless in a joblib.parallel_backend context. -1 means
using all processors. See scikit-learns’ Glossary for more details.

3.9. tslearn.neighbors 125

https://docs.scipy.org/doc/scipy/reference/spatial.distance.html
https://scikit-learn.org/stable/glossary.html#term-n-jobs

tslearn Documentation, Release 0.6.3

Notes

The training data are saved to disk if this model is serialized and may result in a large model file if the training

dataset is large.

Examples

>>> time_series = to_time_series_dataset([[1, 2, 3, 4],

3, 3, 2, 0],
(1, 2, 2, 41D

>>> knn = KNeighborsTimeSeries(n_neighbors=1).fit(time_series)

>>> dataset = to_time_series_dataset([[1,

1, 2, 2, 2,

3, 41D

>>> dist, ind = knn.kneighbors(dataset, return_distance=True)

>>> dist
array([[0.]11)
>>> print(ind)
[[0]]

>>> knn2 = KNeighborsTimeSeries(n_neighbors=10,
- metric="euclidean").fit(time_series)
>>> print(knn2.kneighbors(return_distance=False))

[[2 1]
[2 0]
[0 1]1]

Methods

Fit (X, y])

from_hdf5(path)

from_json(path)

from_pickle(path)
get_metadata_routing()
get_params([deep])

kneighbors([X, n_neighbors, return_distance])
kneighbors_graph([X, n_neighbors, mode])

radius_neighbors([X, radius, ...])
radius_neighbors_graph([X, radius, mode, ...])
set_params(**params)

to_hdf5(path)

to_json(path)
to_pickle(path)

Fit the model using X as training data

Load model from a HDFS5 file.

Load model from a JSON file.

Load model from a pickle file.

Get metadata routing of this object.

Get parameters for this estimator.

Finds the K-neighbors of a point.

Compute the (weighted) graph of k-Neighbors for
points in X.

Find the neighbors within a given radius of a point or
points.

Compute the (weighted) graph of Neighbors for
points in X.

Set the parameters of this estimator.

Save model to a HDFS file.

Save model to a JSON file.

Save model to a pickle file.

fit (X, y=None)

Fit the model using X as training data
Parameters

X

[array-like, shape (n_ts, sz, d)] Training data.

126

Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

classmethod from_hdf5 (parh)
Load model from a HDFS file. Requires h5py http://docs.h5py.org/

Parameters

path
[str] Full path to file.

Returns
Model instance

classmethod from_json(path)
Load model from a JSON file.

Parameters

path
[str] Full path to file.

Returns
Model instance

classmethod from_pickle(path)
Load model from a pickle file.

Parameters

path
[str] Full path to file.

Returns
Model instance

get_metadata_routing()
Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.
Returns

routing
[MetadataRequest] A MetadataRequest encapsulating routing information.

get_params (deep=True)
Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

kneighbors (X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.

Parameters

3.9. tslearn.neighbors 127

http://docs.h5py.org/
https://scikit-learn.org/stable/metadata_routing.html#metadata-routing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest

tslearn Documentation, Release 0.6.3

X
[array-like, shape (n_ts, sz, d)] The query time series. If not provided, neighbors of each
indexed point are returned. In this case, the query point is not considered its own neighbor.

n_neighbors
[int] Number of neighbors to get (default is the value passed to the constructor).

return_distance
[boolean, optional. Defaults to True.] If False, distances will not be returned

Returns
dist
[array] Array representing the distance to points, only present if return_distance=True
ind
[array] Indices of the nearest points in the population matrix.
kneighbors_graph(X=None, n_neighbors=None, mode='connectivity")
Compute the (weighted) graph of k-Neighbors for points in X.

Parameters

X
[{array-like, sparse matrix} of shape (n_queries, n_features), or (n_queries, n_indexed) if
metric == ‘precomputed’, default=None] The query point or points. If not provided, neigh-
bors of each indexed point are returned. In this case, the query point is not considered its
own neighbor. For metric="precomputed' the shape should be (n_queries, n_indexed).
Otherwise the shape should be (n_queries, n_features).

n_neighbors
[int, default=None] Number of neighbors for each sample. The default is the value passed
to the constructor.

mode
[{ ‘connectivity’, ‘distance’ }, default="connectivity’] Type of returned matrix: ‘connectiv-
ity” will return the connectivity matrix with ones and zeros, in ‘distance’ the edges are
distances between points, type of distance depends on the selected metric parameter in
NearestNeighbors class.

Returns

A
[sparse-matrix of shape (n_queries, n_samples_fit)] n_samples_fit is the number of sam-
ples in the fitted data. Afi, j] gives the weight of the edge connecting i to j. The matrix is
of CSR format.

See also:

NearestNeighbors.radius_neighbors_graph
Compute the (weighted) graph of Neighbors for points in X.

128 Chapter 3. API Reference

tslearn Documentation, Release 0.6.3

Examples

>>> X = [[0], [3], [1]]

>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)

>>> neigh.fit(X)

NearestNeighbors(n_neighbors=2)

>>> A = neigh.kneighbors_graph(X)

>>> A.toarray()

array([[1., 0., 1.1,
[6., 1., 1.7,
[1., 0., 1.1

radius_neighbors (X=None, radius=None, return_distance=True, sort_results=False)

Find the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around the
points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.
Parameters

X
[{array-like, sparse matrix} of (n_samples, n_features), default=None] The query point or
points. If not provided, neighbors of each indexed point are returned. In this case, the query
point is not considered its own neighbor.

radius
[float, default=None] Limiting distance of neighbors to return. The default is the value
passed to the constructor.

return_distance
[bool, default=True] Whether or not to return the distances.

sort_results
[bool, default=False] If True, the distances and indices will be sorted by increas-
ing distances before being returned. If False, the results may not be sorted. If re-
turn_distance=False, setting sort_results=True will result in an error.

New in version 0.22.
Returns

neigh_dist
[ndarray of shape (n_samples,) of arrays] Array representing the distances to each point,
only present if return_distance=True. The distance values are computed according to the
metric constructor parameter.

neigh_ind
[ndarray of shape (n_samples,) of arrays] An array of arrays of indices of the approximate
nearest points from the population matrix that lie within a ball of size radius around the
query points.

3.9.

tslearn.neighbors 129

tslearn Documentation, Release 0.6.3

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query points
cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of objects, where each
object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:

>>> import numpy as np

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .