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Quick-start guide

For a list of functions and classes available in tslearn, please have a
look at our API Reference.
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Installation


Using conda

The easiest way to install tslearn is probably via conda:

conda install -c conda-forge tslearn







Using PyPI

Using pip should also work fine:

python -m pip install tslearn





In this case, you should have numpy, cython and C++ build tools
available at build time.



Using latest github-hosted version

If you want to get tslearn’s latest version, you can refer to the
repository hosted at github:

python -m pip install https://github.com/tslearn-team/tslearn/archive/main.zip





In this case, you should have numpy, cython and C++ build tools
available at build time.

It seems on some platforms Cython dependency does not install properly.
If you experiment such an issue, try installing it with the following command:

python -m pip install cython





before you start installing tslearn.
If it still does not work, we suggest you switch to conda installation.



Other requirements

tslearn builds on (and hence depends on) scikit-learn, numpy and
scipy libraries.

If you plan to use the tslearn.shapelets module from
tslearn, tensorflow (v2) should also be installed.
h5py is required for reading or writing models using the hdf5 file format.
In order to load multivariate datasets from the UCR/UEA archive using the
tslearn.datasets.UCR_UEA_datasets class,
installed scipy version should be greater than 1.3.0.
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Getting started

This tutorial will guide you to format your first time series data, import standard datasets, and manipulate them
using dedicated machine learning algorithms.


Time series format

First, let us have a look at what tslearn time series format is. To do so, we will use the to_time_series utility
from tslearn.utils:

>>> from tslearn.utils import to_time_series
>>> my_first_time_series = [1, 3, 4, 2]
>>> formatted_time_series = to_time_series(my_first_time_series)
>>> print(formatted_time_series.shape)
(4, 1)





In tslearn, a time series is nothing more than a two-dimensional numpy array with its first dimension corresponding
to the time axis and the second one being the feature dimensionality (1 by default).

Then, if we want to manipulate sets of time series, we can cast them to three-dimensional arrays, using
to_time_series_dataset. If time series from the set are not equal-sized, NaN values are appended to the shorter
ones and the shape of the resulting array is (n_ts, max_sz, d) where max_sz is the maximum of sizes for time
series in the set.

>>> from tslearn.utils import to_time_series_dataset
>>> my_first_time_series = [1, 3, 4, 2]
>>> my_second_time_series = [1, 2, 4, 2]
>>> formatted_dataset = to_time_series_dataset([my_first_time_series, my_second_time_series])
>>> print(formatted_dataset.shape)
(2, 4, 1)
>>> my_third_time_series = [1, 2, 4, 2, 2]
>>> formatted_dataset = to_time_series_dataset([my_first_time_series,
                                                my_second_time_series,
                                                my_third_time_series])
>>> print(formatted_dataset.shape)
(3, 5, 1)







Importing standard time series datasets

If you aim at experimenting with standard time series datasets, you should have a look at the
tslearn.datasets.

>>> from tslearn.datasets import UCR_UEA_datasets
>>> X_train, y_train, X_test, y_test = UCR_UEA_datasets().load_dataset("TwoPatterns")
>>> print(X_train.shape)
(1000, 128, 1)
>>> print(y_train.shape)
(1000,)





Note that when working with time series datasets, it can be useful to rescale time series using tools from the
tslearn.preprocessing.

If you want to import other time series from text files, the expected format is:


	each line represents a single time series (and time series from a dataset are not forced to be the same length);


	in each line, modalities are separated by a | character (useless if you only have one modality in your data);


	in each modality, observations are separated by a space character.




Here is an example of such a file storing two time series of dimension 2 (the first time series is of length 3 and
the second one is of length 2).

1.0 0.0 2.5|3.0 2.0 1.0
1.0 2.0|4.333 2.12





To read from / write to this format, have a look at the tslearn.utils:

>>> from tslearn.utils import save_time_series_txt, load_time_series_txt
>>> time_series_dataset = load_time_series_txt("path/to/your/file.txt")
>>> save_time_series_txt("path/to/another/file.txt", dataset_to_be_saved)







Playing with your data

Once your data is loaded and formatted according to tslearn standards, the next step is to feed machine learning
models with it. Most tslearn models inherit from scikit-learn base classes, hence interacting with them is very
similar to interacting with a scikit-learn model, except that datasets are not two-dimensional arrays, but rather
tslearn time series datasets (i.e. three-dimensional arrays or lists of two-dimensional arrays).

>>> from tslearn.clustering import TimeSeriesKMeans
>>> km = TimeSeriesKMeans(n_clusters=3, metric="dtw")
>>> km.fit(X_train)





As seen above, one key parameter when applying machine learning methods to time series datasets is the metric to be
used. You can learn more about it in the dedicated section of this documentation.
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Methods for variable-length time series

This page lists machine learning methods in tslearn that are able to deal
with datasets containing time series of different lengths.
We also provide example usage for these methods using the following
variable-length time series dataset:

from tslearn.utils import to_time_series_dataset
X = to_time_series_dataset([[1, 2, 3, 4], [1, 2, 3], [2, 5, 6, 7, 8, 9]])
y = [0, 0, 1]






Classification


	tslearn.neighbors.KNeighborsTimeSeriesClassifier


	tslearn.svm.TimeSeriesSVC


	tslearn.shapelets.LearningShapelets





Examples

from tslearn.neighbors import KNeighborsTimeSeriesClassifier
knn = KNeighborsTimeSeriesClassifier(n_neighbors=2)
knn.fit(X, y)





from tslearn.svm import TimeSeriesSVC
clf = TimeSeriesSVC(C=1.0, kernel="gak")
clf.fit(X, y)





from tslearn.shapelets import LearningShapelets
clf = LearningShapelets(n_shapelets_per_size={3: 1})
clf.fit(X, y)








Regression


	tslearn.svm.TimeSeriesSVR





Examples

from tslearn.svm import TimeSeriesSVR
clf = TimeSeriesSVR(C=1.0, kernel="gak")
y_reg = [1.3, 5.2, -12.2]
clf.fit(X, y_reg)








Nearest-neighbor search


	tslearn.neighbors.KNeighborsTimeSeries





Examples

from tslearn.neighbors import KNeighborsTimeSeries
knn = KNeighborsTimeSeries(n_neighbors=2)
knn.fit(X)
knn.kneighbors()    # Search for neighbors using series from `X` as queries
knn.kneighbors(X2)  # Search for neighbors using series from `X2` as queries








Clustering


	tslearn.clustering.KernelKMeans


	tslearn.clustering.TimeSeriesKMeans


	tslearn.clustering.silhouette_score





Examples

from tslearn.clustering import KernelKMeans
gak_km = KernelKMeans(n_clusters=2, kernel="gak")
labels_gak = gak_km.fit_predict(X)





from tslearn.clustering import TimeSeriesKMeans
km = TimeSeriesKMeans(n_clusters=2, metric="dtw")
labels = km.fit_predict(X)
km_bis = TimeSeriesKMeans(n_clusters=2, metric="softdtw")
labels_bis = km_bis.fit_predict(X)





from tslearn.clustering import TimeSeriesKMeans, silhouette_score
km = TimeSeriesKMeans(n_clusters=2, metric="dtw")
labels = km.fit_predict(X)
silhouette_score(X, labels, metric="dtw")








Barycenter computation


	tslearn.barycenters.dtw_barycenter_averaging


	tslearn.barycenters.softdtw_barycenter





Examples

from tslearn.barycenters import dtw_barycenter_averaging
bar = dtw_barycenter_averaging(X, barycenter_size=3)





from tslearn.barycenters import softdtw_barycenter
from tslearn.utils import ts_zeros
initial_barycenter = ts_zeros(sz=5)
bar = softdtw_barycenter(X, init=initial_barycenter)








Model selection

Also, model selection tools offered by scikit-learn can be used on
variable-length data, in a standard way, such as:

from sklearn.model_selection import KFold, GridSearchCV
from tslearn.neighbors import KNeighborsTimeSeriesClassifier

knn = KNeighborsTimeSeriesClassifier(metric="dtw")
p_grid = {"n_neighbors": [1, 5]}

cv = KFold(n_splits=2, shuffle=True, random_state=0)
clf = GridSearchCV(estimator=knn, param_grid=p_grid, cv=cv)
clf.fit(X, y)







Resampling


	tslearn.preprocessing.TimeSeriesResampler




Finally, if you want to use a method that cannot run on variable-length time
series, one option would be to first resample your data so that all your
time series have the same length and then run your method on this resampled
version of your dataset.

Note however that resampling will introduce temporal distortions in your
data. Use with great care!

from tslearn.preprocessing import TimeSeriesResampler

resampled_X = TimeSeriesResampler(sz=X.shape[1]).fit_transform(X)
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Backend selection and use

tslearn proposes different backends (NumPy and PyTorch)
to compute time series metrics such as DTW and Soft-DTW.
The PyTorch backend can be used to compute gradients of
metric functions thanks to automatic differentiation.


Backend selection

A backend can be instantiated using the function instantiate_backend.
To specify which backend should be instantiated (NumPy or PyTorch),
this function accepts four different kind of input parameters:


	a string equal to "numpy" or "pytorch".


	a NumPy array or a Torch tensor.


	a Backend instance. The input backend is then returned.


	None or anything else than mentioned previously. The backend NumPy is then instantiated.





Examples

If the input is the string "numpy", the NumPyBackend is instantiated.

>>> from tslearn.backend import instantiate_backend
>>> be = instantiate_backend("numpy")
>>> print(be.backend_string)
"numpy"





If the input is the string "pytorch", the PyTorchBackend is instantiated.

>>> be = instantiate_backend("pytorch")
>>> print(be.backend_string)
"pytorch"





If the input is a NumPy array, the NumPyBackend is instantiated.

>>> import numpy as np
>>> be = instantiate_backend(np.array([0]))
>>> print(be.backend_string)
"numpy"





If the input is a Torch tensor, the PyTorchBackend is instantiated.

>>> import torch
>>> be = instantiate_backend(torch.tensor([0]))
>>> print(be.backend_string)
"pytorch"





If the input is a Backend instance, the input backend is returned.

>>> print(be.backend_string)
"pytorch"
>>> be = instantiate_backend(be)
>>> print(be.backend_string)
"pytorch"





If the input is None, the NumPyBackend is instantiated.

>>> be = instantiate_backend(None)
>>> print(be.backend_string)
"numpy"





If the input is anything else, the NumPyBackend is instantiated.

>>> be = instantiate_backend("Hello, World!")
>>> print(be.backend_string)
"numpy"





The function instantiate_backend accepts any number of input parameters, including zero.
To select which backend should be instantiated (NumPy or PyTorch),
a for loop is performed on the inputs until a backend is selected.

>>> be = instantiate_backend(1, None, "Hello, World!", torch.tensor([0]), "numpy")
>>> print(be.backend_string)
"pytorch"





If none of the inputs are related to NumPy or PyTorch, the NumPyBackend is instantiated.

>>> be = instantiate_backend(1, None, "Hello, World!")
>>> print(be.backend_string)
"numpy"








Use the backends

The names of the attributes and methods of the backends
are inspired by the NumPy backend.


Examples

Create backend objects.

>>> be = instantiate_backend("pytorch")
>>> mat = be.array([[0 , 1], [2, 3]], dtype=float)
>>> print(mat)
tensor([[0., 1.],
        [2., 3.]], dtype=torch.float64)





Use backend functions.

>>> norm = be.linalg.norm(mat)
>>> print(norm)
tensor(3.7417, dtype=torch.float64)








Choose the backend used by metric functions

tslearn’s metric functions have an optional input parameter “be” to specify the
backend to use to compute the metric.


Examples

>>> import torch
>>> from tslearn.metrics import dtw
>>> s1 = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> s2 = torch.tensor([[3.0], [4.0], [-3.0]])
>>> sim = dtw(s1, s2, be="pytorch")
>>> print(sim)
sim tensor(6.4807, grad_fn=<SqrtBackward0>)





By default, the optional input parameter be is equal to None.
Note that the first line of the function dtw is:

be = instantiate_backend(be, s1, s2)





Therefore, even if be=None, the PyTorchBackend is instantiated and used to compute the
DTW metric since s1 and s2 are Torch tensors.

>>> sim = dtw(s1, s2)
>>> print(sim)
sim tensor(6.4807, grad_fn=<SqrtBackward0>)








Automatic differentiation

The PyTorch backend can be used to compute the gradients of the metric functions thanks to automatic differentiation.


Examples

Compute the gradient of the Dynamic Time Warping similarity measure.

>>> s1 = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> s2 = torch.tensor([[3.0], [4.0], [-3.0]])
>>> sim = dtw(s1, s2, be="pytorch")
>>> sim.backward()
>>> d_s1 = s1.grad
>>> print(d_s1)
tensor([[-0.3086],
        [-0.1543],
        [ 0.7715]])





Compute the gradient of the Soft-DTW similarity measure.

>>> from tslearn.metrics import soft_dtw
>>> ts1 = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> ts2 = torch.tensor([[3.0], [4.0], [-3.0]])
>>> sim = soft_dtw(ts1, ts2, gamma=1.0, be="pytorch", compute_with_backend=True)
>>> print(sim)
tensor(41.1876, dtype=torch.float64, grad_fn=<SelectBackward0>)
>>> sim.backward()
>>> d_ts1 = ts1.grad
>>> print(d_ts1)
tensor([[-4.0001],
        [-2.2852],
        [10.1643]])
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Integration with other Python packages

tslearn is a general-purpose Python machine learning library for time
series that offers tools for pre-processing and feature extraction as well as
dedicated models for clustering, classification and regression.
To ensure compatibility with more specific Python packages, we provide utilities
to convert data sets from and to other formats.

tslearn.utils.to_time_series_dataset() is a general function that
transforms an array-like object into a three-dimensional array of shape
(n_ts, sz, d) with the following conventions:


	the fist axis is the sample axis, n_ts being the number of time series;


	the second axis is the time axis, sz being the maximum number of time points;


	the third axis is the dimension axis, d being the number of dimensions.




This is how a data set of time series is represented in tslearn.

The following sections briefly explain how to transform a data set from
tslearn to another supported Python package and vice versa.


scikit-learn

scikit-learn [https://scikit-learn.org] is a popular Python package for
machine learning.
tslearn.utils.to_sklearn_dataset() converts a data set from tslearn
format to scikit-learn format. To convert a data set from
scikit-learn, you can use tslearn.utils.to_time_series_dataset().

>>> from tslearn.utils import to_sklearn_dataset
>>> to_sklearn_dataset([[1, 2], [1, 4, 3]])
array([[ 1.,  2., nan],
       [ 1.,  4.,  3.]])
>>> to_time_series_dataset([[ 1.,  2., None], [ 1.,  4.,  3.]])
array([[[ 1.],
    [ 2.],
    [nan]],

   [[ 1.],
    [ 4.],
    [ 3.]]])







pyts

pyts [https://pyts.readthedocs.io] is a Python package dedicated to time
series classification.
tslearn.utils.to_pyts_dataset() and tslearn.utils.from_pyts_dataset()
allow users to convert a data set from tslearn format to pyts format
and vice versa.

>>> from tslearn.utils import from_pyts_dataset, to_pyts_dataset
>>> from_pyts_dataset([[1, 2], [1, 4]])
array([[[1],
        [2]],

       [[1],
        [4]]])

>>> to_pyts_dataset([[[1], [2]], [[1], [4]]])
array([[1., 2.],
       [1., 4.]])







seglearn

seglearn [https://dmbee.github.io/seglearn/] is a python package for machine
learning time series or sequences.
tslearn.utils.to_seglearn_dataset() and tslearn.utils.from_seglearn_dataset()
allow users to convert a data set from tslearn format to seglearn format
and vice versa.

>>> from tslearn.utils import from_seglearn_dataset, to_seglearn_dataset
>>> from_seglearn_dataset([[1, 2], [1, 4, 3]])
array([[[ 1.],
        [ 2.],
        [nan]],

       [[ 1.],
        [ 4.],
        [ 3.]]])
>>> to_seglearn_dataset([[[1], [2], [None]], [[1], [4], [3]]])
array([array([[1.],
       [2.]]),
       array([[1.],
       [4.],
       [3.]])], dtype=object)







stumpy

stumpy [https://stumpy.readthedocs.io/] is a powerful and scalable Python
library for computing a Matrix Profile, which can be used for a variety of time
series data mining tasks.
tslearn.utils.to_stumpy_dataset() and tslearn.utils.from_stumpy_dataset()
allow users to convert a data set from tslearn format to stumpy format
and vice versa.

>>> import numpy as np
>>> from tslearn.utils import from_stumpy_dataset, to_stumpy_dataset
>>> from_stumpy_dataset([np.array([1, 2]), np.array([1, 4, 3])])
array([[[ 1.],
        [ 2.],
        [nan]],

       [[ 1.],
        [ 4.],
        [ 3.]]])
>>> to_stumpy_dataset([[[1], [2], [None]], [[1], [4], [3]]])
[array([1., 2.]), array([1., 4., 3.])]







sktime

sktime [https://alan-turing-institute.github.io/sktime/] is a scikit-learn
compatible Python toolbox for learning with time series.
tslearn.utils.to_sktime_dataset() and tslearn.utils.from_sktime_dataset()
allow users to convert a data set from tslearn format to sktime format
and vice versa.
pandas is a required dependency to use these functions.

>>> import pandas as pd
>>> from tslearn.utils import from_sktime_dataset, to_sktime_dataset
>>> df = pd.DataFrame()
>>> df["dim_0"] = [pd.Series([1, 2]), pd.Series([1, 4, 3])]
>>> from_sktime_dataset(df)
array([[[ 1.],
        [ 2.],
        [nan]],

       [[ 1.],
        [ 4.],
        [ 3.]]])
>>> to_sktime_dataset([[[1], [2], [None]], [[1], [4], [3]]]).shape
(2, 1)







pyflux

pyflux [https://pyflux.readthedocs.io] is a library for time series analysis
and prediction.
tslearn.utils.to_pyflux_dataset() and tslearn.utils.from_pyflux_dataset()
allow users to convert a data set from tslearn format to pyflux format
and vice versa.
pandas is a required dependency to use these functions.

>>> import pandas as pd
>>> from tslearn.utils import from_pyflux_dataset, to_pyflux_dataset
>>> df = pd.DataFrame([1, 2], columns=["dim_0"])
>>> from_pyflux_dataset(df)
array([[[1.],
        [2.]]])
>>> to_pyflux_dataset([[[1], [2]]]).shape
(2, 1)







tsfresh

tsfresh [https://tsfresh.readthedocs.io] is a python package automatically
calculating a large number of time series characteristics.
tslearn.utils.to_tsfresh_dataset() and tslearn.utils.from_tsfresh_dataset()
allow users to convert a data set from tslearn format to tsfresh format
and vice versa.
pandas is a required dependency to use these functions.

>>> import pandas as pd
>>> from tslearn.utils import from_tsfresh_dataset, to_tsfresh_dataset
>>> df = pd.DataFrame([[0, 0, 1.0],
...                    [0, 1, 2.0],
...                    [1, 0, 1.0],
...                    [1, 1, 4.0],
...                    [1, 2, 3.0]], columns=['id', 'time', 'dim_0'])
>>> from_tsfresh_dataset(df)
array([[[ 1.],
    [ 2.],
    [nan]],

   [[ 1.],
    [ 4.],
    [ 3.]]])
>>> to_tsfresh_dataset([[[1], [2], [None]], [[1], [4], [3]]]).shape
(5, 3)







cesium

cesium [http://cesium-ml.org] is an open-source platform for time series inference.
tslearn.utils.to_cesium_dataset() and tslearn.utils.from_cesium_dataset()
allow users to convert a data set from tslearn format to cesium format
and vice versa.
cesium is a required dependency to use these functions.

>>> from tslearn.utils import from_cesium_dataset, to_cesium_dataset
>>> from cesium.data_management import TimeSeries
>>> from_cesium_dataset([TimeSeries(m=[1, 2]), TimeSeries(m=[1, 4, 3])])
array([[[ 1.],
        [ 2.],
        [nan]],

       [[ 1.],
        [ 4.],
        [ 3.]]])
>>> len(to_cesium_dataset([[[1], [2], [None]], [[1], [4], [3]]]))
2
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Contributing

First of all, thank you for considering contributing to tslearn.
It’s people like you that will help make tslearn a great toolkit.

Contributions are managed through GitHub Issues and Pull Requests.

We are welcoming contributions in the following forms:


	Bug reports: when filing an issue to report a bug, please use the search tool to ensure the bug hasn’t been reported yet;


	New feature suggestions: if you think tslearn should include a new algorithm, please open an issue to ask for it (of course, you should always check that the feature has not been asked for yet :). Think about linking to a pdf version of the paper that first proposed the method when suggesting a new algorithm.


	Bug fixes and new feature implementations: if you feel you can fix a reported bug/implement a suggested feature yourself, do not hesitate to:


	fork the project;


	implement your bug fix;


	submit a pull request referencing the ID of the issue in which the bug was reported / the feature was suggested;








If you would like to contribute by implementing a new feature reported in the Issues, maybe starting with Issues that are attached the “good first issue” label [https://github.com/tslearn-team/tslearn/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22] would be a good idea.

When submitting code, please think about code quality, adding proper docstrings including doctests with high code coverage.


More details on Pull requests

The preferred workflow for contributing to tslearn is to fork the
main repository [https://github.com/tslearn-team/tslearn] on
GitHub, clone, and develop on a branch. Steps:


	Fork the project repository [https://github.com/tslearn-team/tslearn]
by clicking on the ‘Fork’ button near the top right of the page. This creates
a copy of the code under your GitHub user account. For more details on
how to fork a repository see this guide [https://help.github.com/articles/fork-a-repo/].


	Clone your fork of the tslearn repo from your GitHub account to your local disk:

$ git clone git@github.com:YourLogin/tslearn.git
$ cd tslearn







	Create a my-feature branch to hold your development changes.
Always use a my-feature branch. It’s good practice to never work on the master branch:

$ git checkout -b my-feature







	Develop the feature on your feature branch. To record your changes in git,
add changed files using git add and then git commit files:

$ git add modified_files
$ git commit







	Push the changes to your GitHub account with:

$ git push -u origin my-feature







	Follow these instructions [https://help.github.com/articles/creating-a-pull-request-from-a-fork]
to create a pull request from your fork. This will send an email to the committers.




(If any of the above seems like magic to you, please look up the
Git documentation [https://git-scm.com/documentation] on the web, or ask a friend or another contributor for help.)


Pull Request Checklist

We recommended that your contribution complies with the
following rules before you submit a pull request:


	Follow the PEP8 Guidelines.


	If your pull request addresses an issue, please use the pull request title
to describe the issue and mention the issue number in the pull request description.
This will make sure a link back to the original issue is created.


	All public methods should have informative docstrings with sample
usage presented as doctests when appropriate.


	Please prefix the title of your pull request with [MRG] (Ready for
Merge), if the contribution is complete and ready for a detailed review.
An incomplete contribution – where you expect to do more work before
receiving a full review – should be prefixed [WIP] (to indicate a work
in progress) and changed to [MRG] when it matures. WIPs may be useful
to: indicate you are working on something to avoid duplicated work,
request broad review of functionality or API, or seek collaborators.
WIPs often benefit from the inclusion of a
task list [https://github.com/blog/1375-task-lists-in-gfm-issues-pulls-comments]
in the PR description.


	When adding additional functionality, provide at least one
example script in the tslearn/docs/examples/ folder. Have a look at other
examples for reference. Examples should demonstrate why the new
functionality is useful in practice and, if possible, compare it
to other methods available in tslearn.


	Documentation and high-coverage tests are necessary for enhancements to be
accepted. Bug-fixes or new features should be provided with
non-regression tests [https://en.wikipedia.org/wiki/Non-regression_testing].
These tests verify the correct behavior of the fix or feature. In this
manner, further modifications on the code base are granted to be consistent
with the desired behavior.
For the Bug-fixes case, at the time of the PR, this tests should fail for
the code base in master and pass for the PR code.


	At least one paragraph of narrative documentation with links to
references in the literature (with PDF links when possible) and
the example.




Here is a description of useful tools to check your code locally:


	No PEP8 [https://www.python.org/dev/peps/pep-0008/] or PEP257 [https://www.python.org/dev/peps/pep-0257/] errors;
check with the flake8 [https://flake8.pycqa.org/en/latest/] Python package:

$ pip install flake8
$ flake8 path/to/module.py  # check for errors in one file
$ flake8 path/to/folder  # check for errors in all the files in a folder
$ git diff -u | flake8 --diff  # check for errors in the modified code only







	To run the tests locally and get code coverage, use the
pytest [https://docs.pytest.org/en/latest/] and pytest-cov [https://pytest-cov.readthedocs.io/en/latest/] Python packages:

$ pip install pytest pytest-cov
$ pytest --cov tslearn







	To build the documentation locally, install the following packages and run
the make html command in the tslearn/docs folder:

$ pip install sphinx==1.8.5 sphinx-gallery sphinx-bootstrap-theme nbsphinx
$ pip install numpydoc matplotlib
$ cd tslearn/docs
$ make html





The documentation will be generated in the _build/html. You can double
click on index.html to open the index page, which will look like
the first page that you see on the online documentation. Then you can move to
the pages that you modified and have a look at your changes.





Bonus points for contributions that include a performance analysis with
a benchmark script and profiling output.
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Dynamic Time Warping

Dynamic Time Warping (DTW) [1] is a similarity measure between time series.
Let us consider two time series \(x = (x_0, \dots, x_{n-1})\) and
\(y = (y_0, \dots, y_{m-1})\) of respective lengths \(n\) and
\(m\).
Here, all elements \(x_i\) and \(y_j\) are assumed to lie in the same
\(d\)-dimensional space.
In tslearn, such time series would be represented as arrays of respective
shapes (n, d) and (m, d) and DTW can be computed using the following code:

from tslearn.metrics import dtw, dtw_path

dtw_score = dtw(x, y)
# Or, if the path is also an important information:
optimal_path, dtw_score = dtw_path(x, y)






Optimization problem

DTW between \(x\) and \(y\) is formulated as the following
optimization problem:


\[DTW(x, y) = \min_\pi \sqrt{ \sum_{(i, j) \in \pi} d(x_i, y_j)^2 }\]

where \(\pi = [\pi_0, \dots , \pi_K]\) is a path that satisfies the
following properties:


	it is a list of index pairs \(\pi_k = (i_k, j_k)\) with
\(0 \leq i_k < n\) and \(0 \leq j_k < m\)


	\(\pi_0 = (0, 0)\) and \(\pi_K = (n - 1, m - 1)\)


	for all \(k > 0\) , \(\pi_k = (i_k, j_k)\) is related to
\(\pi_{k-1} = (i_{k-1}, j_{k-1})\) as follows:


	\(i_{k-1} \leq i_k \leq i_{k-1} + 1\)


	\(j_{k-1} \leq j_k \leq j_{k-1} + 1\)








Here, a path can be seen as a temporal alignment of time series such that
Euclidean distance between aligned (ie. resampled) time series is minimal.

The following image exhibits the DTW path (in white) for a given pair of time
series, on top of the cross-similarity matrix that stores \(d(x_i, y_j)\)
values.


[image: ../_images/sphx_glr_plot_dtw_thumb.svg]
Code to produce such visualization is available in our Gallery of examples.



Algorithmic solution

There exists an \(O(mn)\) algorithm to compute the exact optimum for this
problem (pseudo-code is provided for time series indexed from 1 for
simplicity):

def dtw(x, y):
    # Initialization
    for i = 1..n
        for j = 1..m
            C[i, j] = inf

    C[0, 0] = 0.

   # Main loop
   for i = 1..n
        for j = 1..m
            dist = d(x_i, y_j) ** 2
            C[i, j] = dist + min(C[i-1, j], C[i, j-1], C[i-1, j-1])

   return sqrt(C[n, m])







Using a different ground metric

By default, tslearn uses squared Euclidean distance as the base metric
(i.e. \(d(\cdot, \cdot)\) in the optimization problem above is the
Euclidean distance). If one wants to use another ground metric, the code
would then be:

from tslearn.metrics import dtw_path_from_metric
path, cost = dtw_path_from_metric(x, y, metric=compatible_metric)





in which case the optimization problem that would be solved would be:


\[DTW(x, y) = \min_\pi \sum_{(i, j) \in \pi} \tilde{d}(x_i, y_j)\]

where \(\tilde{d}(\cdot, \cdot)\) is the user-defined ground metric,
denoted compatible_metric in the code snippet above.



Properties

Dynamic Time Warping holds the following properties:


	\(\forall x, y, DTW(x, y) \geq 0\)


	\(\forall x, DTW(x, x) = 0\)




However, mathematically speaking, DTW is not a valid distance since it does
not satisfy the triangular inequality.



Additional constraints

The set of temporal deformations to which DTW is invariant can be reduced by
setting additional constraints on the set of acceptable paths.
These constraints typically consists in forcing paths to lie close to the
diagonal.

First, the Sakoe-Chiba band is parametrized by a radius \(r\) (number of
off-diagonal elements to consider, also called warping window size sometimes),
as illustrated below:


[image: ../_images/sakoe_chiba.png]

\(n = m = 10, r = 3\). Diagonal is marked in grey for better
readability.



The corresponding code would be:

from tslearn.metrics import dtw
cost = dtw(x, y, global_constraint="sakoe_chiba", sakoe_chiba_radius=3)





Second, the Itakura parallelogram sets a maximum slope \(s\) for alignment
paths, which leads to a parallelogram-shaped constraint:


[image: ../_images/itakura.png]

\(n = m = 10, s = 2\). Diagonal is marked in grey for better
readability.



The corresponding code would be:

from tslearn.metrics import dtw
cost = dtw(x, y, global_constraint="itakura", itakura_max_slope=2.)





Alternatively, one can put an upper bound on the warping path length so as to
discard complex paths, as described in [2]:

from tslearn.metrics import dtw_limited_warping_length
cost = dtw_limited_warping_length(x, y, max_length)







Barycenters

Computing barycenter (also known as Fréchet means) of a set \(\mathcal{D}\)
for DTW corresponds to the following optimization problem:


\[\min_\mu \sum_{x \in \mathcal{D}} DTW(\mu, x)^2\]

Optimizing this quantity can be done through the DTW Barycenter Averaging (DBA)
algorithm presented in [3].

from tslearn.barycenters import dtw_barycenter_averaging
b = dtw_barycenter_averaging(dataset)





This is the algorithm at stake when invoking
tslearn.clustering.TimeSeriesKMeans with
metric="dtw".



soft-DTW

DTW is not differentiable with respect to its inputs because of the
non-differentiability of the min operation.
A differentiable extension has been presented in [4] in which the min
operator is replaced by soft-min, using the log-sum-exp formulation:


\[\text{soft-min}_\gamma(a_1, \dots, a_n) =
    - \gamma \log \sum_i e^{-a_i / \gamma}\]

soft-DTW hence depends on a hyper-parameter \(\gamma\) that controls the
smoothing of the resulting metric (squared DTW corresponds to the limit case
\(\gamma \rightarrow 0\)).

from tslearn.metrics import soft_dtw
soft_dtw_score = soft_dtw(x, y, gamma=.1)





When a strictly positive value is set for \(\gamma\), the corresponding
alignment matrix corresponds to a blurred version of the DTW one:


[image: ../_images/softdtw_alignment.png]

Also, barycenters for soft-DTW can be estimated through gradient descent:

from tslearn.barycenters import softdtw_barycenter
b = softdtw_barycenter(dataset, gamma=.1)





This is the algorithm at stake when invoking
tslearn.clustering.TimeSeriesKMeans with
metric="softdtw".



Examples Involving DTW variants

[image: ]Longest Common Subsequence

  Longest Common Subsequence


[image: ]Canonical Time Warping

  Canonical Time Warping


[image: ]Dynamic Time Warping

  Dynamic Time Warping



[image: ]Soft Dynamic Time Warping

  Soft Dynamic Time Warping



[image: ]DTW computation with a custom distance metric

  DTW computation with a custom distance metric



[image: ]Barycenters

  Barycenters


[image: ]Soft-DTW weighted barycenters

  Soft-DTW weighted barycenters
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Longest Common Subsequence

Longest Common Subsequence (LCSS) [1] is a similarity measure between time series.
Let us consider two time series \(x = (x_0, \dots, x_{n-1})\) and
\(y = (y_0, \dots, y_{m-1})\) of respective lengths \(n\) and
\(m\).
Here, all elements \(x_i\) and \(y_j\) are assumed to lie in the same
\(d\)-dimensional space.
In tslearn, such time series would be represented as arrays of respective
shapes (n, d) and (m, d) and LCSS can be computed using the following code:

from tslearn.metrics import lcss, lcss_path

lcss_score = lcss(x, y)
# Or, if the path is also an important information:
path, lcss_score = lcss_path(x, y)






Problem

The similarity \(S\) between \(x\) and \(y\),
given a positive real number \(\epsilon\), is formulated as follows:


\[S(x, y, \epsilon) = \frac{LCSS_{\epsilon} (x, y)}{\min(n, m)}\]

The constant \(\epsilon\) is the matching threshold.

Here, a path can be seen as the parts of the time series where the Euclidean
distance between them does not exceed a given threshold, i.e., they are close/similar.

To retrieve a meaningful similarity value from the length of the longest common subsequence,
the percentage of that value regarding the length of the shortest time series is returned.



Algorithmic solution

There exists an \(O(n^2)\) algorithm to compute the solution for this
problem (pseudo-code is provided for time series indexed from 1 for
simplicity):

def lcss(x, y):
   # Initialization
   for i = 0..n
       C[i, 0] = 0
   for j = 0..m
       C[0, j] = 0

   # Main loop
   for i = 1..n
        for j = 1..m
            if dist(x_i, x_j) <= epsilon:
                C[i, j] = C[i-1, j-1] + 1
            else:
                C[i, j] = max(C[i, j-1], C[i-1, j])

   return C[n, m] / min(n, m)







Using a different ground metric

By default, tslearn uses squared Euclidean distance as the base metric
(i.e. \(dist()\) in the problem above is the
Euclidean distance). If one wants to use another ground metric, the code
would then be:

from tslearn.metrics import lcss_path_from_metric
path, cost = lcss_path_from_metric(x, y, metric=compatible_metric)







Properties

The Longest Common Subsequence holds the following properties:


	\(\forall x, y, LCSS(x, y) \in \left[0, 1\right]\)


	\(\forall x, y, LCSS(x, y) = LCSS(y, x)\)


	\(\forall x, LCSS(x, x) = 1\)




The values returned by LCSS range from 0 to 1,
the value 1 being taken when the two time series completely match.



Additional constraints

One can set additional constraints to the set of acceptable paths.
These constraints typically consists in forcing paths to lie close to the
diagonal.

First, the Sakoe-Chiba band is parametrized by a radius \(r\) (number of
off-diagonal elements to consider, also called warping window size sometimes),
as illustrated below:


[image: ../_images/sakoe_chiba.png]

\(n = m = 10, r = 3\). Diagonal is marked in grey for better
readability.



The corresponding code would be:

from tslearn.metrics import lcss
cost = lcss(x, y, global_constraint="sakoe_chiba", sakoe_chiba_radius=3)





The Sakoe-Chiba radius corresponds to the parameter \(\delta\) mentioned in [1],
it controls how far in time we can go in order to match a given
point from one time series to a point in another time series.

Second, the Itakura parallelogram sets a maximum slope \(s\) for alignment
paths, which leads to a parallelogram-shaped constraint:


[image: ../_images/itakura.png]

\(n = m = 10, s = 2\). Diagonal is marked in grey for better
readability.



The corresponding code would be:

from tslearn.metrics import lcss
cost = lcss(x, y, global_constraint="itakura", itakura_max_slope=2.)







Examples Involving LCSS variants

[image: ]Longest Common Subsequence

  Longest Common Subsequence



[image: ]
Longest Commom Subsequence with a custom distance metric

  Longest Commom Subsequence with a custom distance metric
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Kernel Methods

In the following, we will discuss the use of kernels to compare time series.
A kernel \(k(\cdot, \cdot)\) is such that there exists an unknown map
\(\Phi\) such that:


\[k(\mathbf{x}, \mathbf{y}) =
    \left\langle
        \Phi(\mathbf{x}), \Phi(\mathbf{y})
    \right\rangle_{\mathcal{H}}\]

i.e. \(k(\cdot, \cdot)\) is the inner product between \(\mathbf{x}\)
and \(\mathbf{y}\) in some (unknown) embedding space \(\mathcal{H}\).
In practice, \(k(\mathbf{x}, \mathbf{y})\) will be large when
\(\mathbf{x}\) and \(\mathbf{y}\) are similar and close to 0 when they
are very dissimilar.

A large number of kernel methods from the machine learning literature rely on
the so-called kernel trick, that consists in performing computations in the
embedding space \(\mathcal{H}\) without ever actually performing any
embedding.
As an example, one can compute distance between \(\mathbf{x}\)
and \(\mathbf{y}\) in \(\mathcal{H}\) via:


\[\begin{split}\| \Phi(\mathbf{x}) - \Phi(\mathbf{y})\|_\mathcal{H}^2
    &= \left\langle \Phi(\mathbf{x}) - \Phi(\mathbf{y}),
                    \Phi(\mathbf{x}) - \Phi(\mathbf{y})
       \right\rangle_{\mathcal{H}} \\
    &= \left\langle \Phi(\mathbf{x}), \Phi(\mathbf{x})
       \right\rangle_{\mathcal{H}}  +
       \left\langle \Phi(\mathbf{y}), \Phi(\mathbf{y})
       \right\rangle_{\mathcal{H}}  - 2
       \left\langle \Phi(\mathbf{x}), \Phi(\mathbf{y})
       \right\rangle_{\mathcal{H}} \\
    &= k(\mathbf{x}, \mathbf{x}) + k(\mathbf{y}, \mathbf{y})
       - 2 k(\mathbf{x}, \mathbf{y})\end{split}\]

Such computations are used, for example, in the kernel-\(k\)-means
algorithm (see below).


Global Alignment Kernel

The Global Alignment Kernel (GAK) is a kernel that operates on time
series.

It is defined, for a given bandwidth \(\sigma\), as:


\[k(\mathbf{x}, \mathbf{y}) =
    \sum_{\pi \in \mathcal{A}(\mathbf{x}, \mathbf{y})}
        \prod_{i=1}^{ | \pi | }
            \exp \left( - \frac{ \left\| x_{\pi_1(i)} - y_{\pi_2{j}} \right\|^2}{2 \sigma^2} \right)\]

where \(\mathcal{A}(\mathbf{x}, \mathbf{y})\) is the set of all possible
alignments between series \(\mathbf{x}\) and \(\mathbf{y}\).

It is advised in [1] to set the bandwidth \(\sigma\) as a multiple of a
simple estimate of the median distance of different points observed in
different time-series of your training set, scaled by the square root of the
median length of time-series in the set.
This estimate is made available in tslearn through
tslearn.metrics.sigma_gak:

from tslearn.metrics import gak, sigma_gak

sigma = sigma_gak(X)
k_01 = gak(X[0], X[1], sigma=sigma)





Note however that, on long time series, this estimate can lead to numerical
overflows, which smaller values can avoid.

Finally, GAK is related to softDTW [3] through the
following formula:


\[k(\mathbf{x}, \mathbf{y}) =
    \exp \left(- \frac{\text{softDTW}_\gamma(\mathbf{x}, \mathbf{y})}{\gamma} \right)\]

where \(\gamma\) is the hyper-parameter controlling softDTw smoothness,
which is related to the bandwidth parameter of GAK through
\(\gamma = 2 \sigma^2\).



Clustering and Classification

Kernel \(k\)-means [2] is a method that uses the kernel trick to
implicitly perform \(k\)-means clustering in the embedding space associated
to a kernel.
This method is discussed in
our User Guide section dedicated to clustering.

Kernels can also be used in classification settings.
tslearn.svm offers implementations of Support Vector Machines (SVM)
that accept GAK as a kernel.
This implementation heavily relies on scikit-learn and libsvm.
One implication is that predict_proba and predict_log_proba methods
are computed based on cross-validation probability estimates, which has two
main implications, as discussed in more details in scikit-learn’s
user guide [https://scikit-learn.org/stable/modules/svm.html#scores-probabilities]:

1. setting the constructor option probability to True makes the fit
step longer since it then relies on an expensive five-fold cross-validation;

2. the probability estimates obtained through predict_proba may be
inconsistent with the scores provided by decision_function and the
predicted class output by predict.



Examples Using Kernel Methods

[image: ]SVM and GAK

  SVM and GAK



[image: ]Kernel k-means

  Kernel k-means
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Time Series Clustering

Clustering is the task of grouping together similar objects.
This task hence heavily relies on the notion of similarity one relies on.

The following Figure illustrates why choosing an adequate similarity function
is key (code to reproduce is available
in the Gallery of Examples).


[image: ../_images/kmeans.svg]
\(k\)-means clustering with Euclidean distance. Each subfigure represents series from a given cluster and their centroid (in red).



This Figure is the result of a \(k\)-means clustering that uses Euclidean
distance as a base metric.
One issue with this metric is that it is not invariant to time shifts, while
the dataset at stake clearly holds such invariants.


\(k\)-means and Dynamic Time Warping

To overcome the previously illustrated issue,
distance metrics dedicated to time series, such as
Dynamic Time Warping (DTW), are required.
As can be seen in the Figure below, the use of such metrics produce more
meaningful results.

The tslearn.clustering module in tslearn offers an
option to use DTW as the core metric in a \(k\)-means algorithm,
which leads to better clusters and centroids:


[image: ../_images/kmeans_dtw.svg]
\(k\)-means clustering with Dynamic Time Warping. Each subfigure represents series from a given cluster and their centroid (in red).



First, clusters gather time series of similar shapes, which is due to the
ability of Dynamic Time Warping (DTW) to deal with time shifts, as explained
above.
Second, cluster centers (aka centroids) are computed as the barycenters
with respect to DTW, hence
they allow to retrieve a sensible average shape whatever the temporal shifts
in the cluster (see our dedicated User Guide section
for more details on how these barycenters are computed).

In tslearn, clustering a time series dataset with \(k\)-means and a
dedicated time series metric is as easy as

from tslearn.clustering import TimeSeriesKMeans

model = TimeSeriesKMeans(n_clusters=3, metric="dtw",
                         max_iter=10, random_state=seed)
model.fit(X_train)





where X_train is the considered unlabelled dataset of time series.
The metric parameter can also be set to "softdtw" as an alternative
time series metric (cf.
our User Guide section on soft-DTW).



Kernel \(k\)-means and Time Series Kernels

Another option to deal with such time shifts is to rely on the kernel trick.
Indeed, [1] introduces a positive semidefinite kernel for time series,
inspired from DTW.
Then, the kernel \(k\)-means algorithm [2], that is equivalent to a
\(k\)-means
that would operate in the Reproducing Kernel Hilbert Space associated to the
chosen kernel, can be used:


[image: ../_images/kernel_kmeans.svg]
Kernel \(k\)-means clustering with Global Alignment Kernel. Each subfigure represents series from a given cluster.



A first significant difference (when compared to \(k\)-means) is that
cluster centers are never computed
explicitly, hence time series assignments to cluster are the only kind of
information available once the clustering is performed.

Second, one should note that the clusters generated by kernel-\(k\)-means
are phase dependent (see clusters 2 and 3 that differ in phase rather than in
shape).
This is because Global Alignment Kernel is not invariant to time shifts, as
demonstrated in [3] for the closely related soft-DTW [4].



Examples Using Clustering Estimators

[image: ]k-means

  k-means



[image: ]Kernel k-means

  Kernel k-means
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Shapelets

Shapelets are defined in [1] as “subsequences that are in some sense
maximally representative of a class”.
Informally, if we assume a binary classification setting, a shapelet is
discriminant if it is present in most series of one class and absent from
series of the other class.
To assess the level of presence, one uses shapelet matches:


\[d(\mathbf{x}, \mathbf{s}) =
    \min_t \| \mathbf{x}_{t\rightarrow t+L} - \mathbf{s} \|_2\]

where \(L\) is the length (number of timestamps) of shapelet
\(\mathbf{s}\) and \(\mathbf{x}_{t\rightarrow t+L}\) is the subsequence
extracted from time series \(\mathbf{x}\) that starts at time index
\(t\) and stops at \(t+L\).
If the above-defined distance is small enough, then
shapelet \(\textbf{s}\) is supposed to be present in time series
\(\mathbf{x}\).


[image: ../_images/sphx_glr_plot_shapelet_locations_001.svg]
The distance from a time series to a shapelet is done by sliding the
shorter shapelet over the longer time series and calculating the
point-wise distances. The minimal distance found is returned.



In a classification setting, the goal is then to find the most discriminant
shapelets given some labeled time series data.
Shapelets can be mined from the training set [1] or learned using
gradient-descent.


Learning Time-series Shapelets

tslearn provides an implementation of “Learning Time-series Shapelets”,
introduced in [2], that is an instance of the latter category.
In Learning Shapelets,
shapelets are learned such
that time series represented in their shapelet-transform space (i.e. their
distances to each of the shapelets) are linearly separable.
A shapelet-transform representation of a time series \(\mathbf{x}\) given
a set of shapelets \(\{\mathbf{s}_i\}_{i \leq k}\) is the feature vector:
\([d(\mathbf{x}, \mathbf{s}_1), \cdots, d(\mathbf{x}, \mathbf{s}_k)]\).
This is illustrated below with a two-dimensional example.


[image: ../_images/sphx_glr_plot_shapelet_distances_001.svg]
An example of how time series are transformed into linearly separable
distances.



In tslearn, in order to learn shapelets and transform timeseries to
their corresponding shapelet-transform space, the following code can be used:

from tslearn.shapelets import LearningShapelets

model = LearningShapelets(n_shapelets_per_size={3: 2})
model.fit(X_train, y_train)
train_distances = model.transform(X_train)
test_distances = model.transform(X_test)
shapelets = model.shapelets_as_time_series_





A tslearn.shapelets.LearningShapelets model has several
hyper-parameters, such as the maximum number of iterations and the batch size.
One important hyper-parameters is the n_shapelets_per_size
which is a dictionary where the keys correspond to the desired lengths of the
shapelets and the values to the desired number of shapelets per length. When
set to None, this dictionary will be determined by a
heuristic.
After creating the model, we can fit the optimal shapelets
using our training data. After a fitting phase, the distances can be calculated
using the transform function. Moreover, you can easily access the
learned shapelets by using the shapelets_as_time_series_ attribute.

It is important to note that due to the fact that a technique based on
gradient-descent is used to learn the shapelets, our model can be prone
to numerical issues (e.g. exploding and vanishing gradients). For that
reason, it is important to normalize your data. This can be done before
passing the data to the
fit
and
transform
methods, by using our
tslearn.preprocessing
module but this can be done internally by the algorithm itself by setting the
scale
parameter.



Examples Involving Shapelet-based Estimators

[image: ]Learning Shapelets

  Learning Shapelets


[image: ]Aligning discovered shapelets with timeseries

  Aligning discovered shapelets with timeseries


[image: ]Learning Shapelets: decision boundaries in 2D distance space

  Learning Shapelets: decision boundaries in 2D distance space
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Matrix Profile

The Matrix Profile, \(MP\), is a new time series that can be calculated based on an input time series \(T\) and a subsequence length \(m\). \(MP_i\) corresponds to the minimal distance from the query subsequence \(T_{i\rightarrow i+m}\) to any subsequence in \(T\) [1].  As the distance from the query subsequence to itself will be equal to zero, \(T_{i-\frac{m}{4}\rightarrow i+\frac{m}{4}}\) is considered as an exclusion zone. In order to construct the Matrix Profile, a distance profile which is similar to the distance calculation used to transform time series into their shapelet-transform space, is calculated for each subsequence, as illustrated below:


[image: ../_images/sphx_glr_plot_distance_and_matrix_profile_001.svg]
For each segment, the distances to all subsequences of the time series are calculated and the minimal distance that does not correspond to the original location of the segment (where the distance is zero) is returned.




Implementation

The Matrix Profile implementation provided in tslearn uses numpy or wraps around STUMPY [2]. Three different versions are available:


	numpy: a slow implementation


	stump: a fast CPU version, which requires STUMPY to be installed


	gpu_stump: the fastest version, which requires STUMPY to be installed and a GPU






Possible Applications

The Matrix Profile allows for many possible applications, which are well documented on the page created by the original authors [3]. Some of these applications include: motif and shapelet extraction, discord detection, earthquake detection, and many more.



Examples Involving Matrix Profile

[image: ]Matrix Profile

  Matrix Profile


[image: ]Distance and Matrix Profiles

  Distance and Matrix Profiles
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Early Classification of Time Series

Early classification of time series is the task of performing a classification
as early as possible for an incoming time series, and decision about when
to trigger the decision is part of the prediction process.


Early Classification Cost Function

Dachraoui et al. [1] introduces a composite loss function for early
classification of time series that balances earliness and accuracy.

The cost function is of the following form:


\[\mathcal{L}(\mathbf{x}_{\rightarrow t}, y, t, \boldsymbol{\theta}) =
    \mathcal{L}_c(\mathbf{x}_{\rightarrow t}, y, \boldsymbol{\theta})
    + \alpha t\]

where \(\mathcal{L}_c(\cdot,\cdot,\cdot)\) is a
classification loss and \(t\) is the time at which a
decision is triggered by the system (\(\mathbf{x}_{\rightarrow t}\) is
time series \(\mathbf{x}\) observed up to time \(t\)).
In this setting, \(\alpha\) drives the tradeoff between accuracy and
earliness and is supposed to be a hyper-parameter of the method.

The authors rely on (i) a clustering of the
training time series and (ii) individual classifiers \(m_t(\cdot)\)
trained at all possible timestamps, so as to be able to predict,
at time \(t\), an expected cost for all future times \(t + \tau\)
with \(\tau \geq 0\):


\[f_\tau(\mathbf{x}_{\rightarrow t}, y) =
    \sum_k \left[ P(C_k | \mathbf{x}_{\rightarrow t})
    \sum_i \left( P(y=i | C_k)
    \left( \sum_{j \neq i} P_{t+\tau}(\hat{y} = j | y=i, C_k)
    \right) \right)
    \right]
    + \alpha t\]

where:


	\(P(C_k | \mathbf{x}_{\rightarrow t})\) is a soft-assignment weight of
\(\mathbf{x}_{\rightarrow t}\) to cluster \(C_k\);


	\(P(y=i | C_k)\) is obtained from a contingency table that stores the
number of training time series of each class in each cluster;


	\(P_{t+\tau}(\hat{y} = j | y=i, C_k)\) is obtained through training time
confusion matrices built on time series from cluster \(C_k\) using
classifier \(m_{t+\tau}(\cdot)\).




At test time, if a series is observed up to time \(t\) and if, for all
positive \(\tau\) we have
\(f_\tau(\mathbf{x}_{\rightarrow t}, y) \geq f_0(\mathbf{x}_{\rightarrow t}, y)\),
then a decision is made using classifier \(m_t(\cdot)\).


[image: ../_images/sphx_glr_plot_early_classification_002.svg]
Early classification. At test time, prediction is made at a timestamp such that the expected earliness-accuracy is optimized, which can hence vary between time series.



To use this early classifier in tslearn, one can rely on the
tslearn.early_classification.NonMyopicEarlyClassifier class:

from tslearn.early_classification import NonMyopicEarlyClassifier

early_clf = NonMyopicEarlyClassifier(n_clusters=3,
                                     cost_time_parameter=1e-3,
                                     lamb=1e2,
                                     random_state=0)
early_clf.fit(X_train, y_train)
preds, times = early_clf.predict_class_and_earliness(X_test)





where cost_time_parameter is the \(\alpha\) parameter presented above
and lamb is a trade-off parameter for the soft-assignment of partial series
to clusters \(P(C_k | \mathbf{x}_{\rightarrow t})\) (when lamb tends to
infinity, the assignment tends to hard-assignment, and when lamb is set to
0, equal probabilities are obtained for all clusters).



Examples Involving Early Classification Estimators

[image: ]Early Classification

  Early Classification
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API Reference

The complete tslearn project is automatically documented for every module.



	tslearn.barycenters

	The tslearn.barycenters module gathers algorithms for time series barycenter computation.



	tslearn.clustering

	The tslearn.clustering module gathers time series specific clustering algorithms.



	tslearn.datasets

	The tslearn.datasets module provides simplified access to standard time series datasets.



	tslearn.early_classification

	The tslearn.early_classification module gathers early classifiers for time series.



	tslearn.generators

	The tslearn.generators module gathers synthetic time series dataset generation routines.



	tslearn.matrix_profile

	The tslearn.matrix_profile module gathers methods for the computation of Matrix Profiles from time series.



	tslearn.metrics

	The tslearn.metrics module delivers time-series specific metrics to be  used at the core of machine learning algorithms.



	tslearn.neural_network

	The tslearn.neural_network module contains multi-layer perceptron models for time series classification and regression.



	tslearn.neighbors

	The tslearn.neighbors module gathers nearest neighbor algorithms using time series metrics.



	tslearn.piecewise

	The tslearn.piecewise module gathers time series piecewise approximation algorithms.



	tslearn.preprocessing

	The tslearn.preprocessing module gathers time series scalers and  resamplers.



	tslearn.shapelets

	The tslearn.shapelets module gathers Shapelet-based algorithms.



	tslearn.svm

	The tslearn.svm module contains Support Vector Classifier (SVC) and Support Vector Regressor (SVR) models for time series.



	tslearn.utils

	The tslearn.utils module includes various utilities.
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tslearn.barycenters

The tslearn.barycenters module gathers algorithms for time series
barycenter computation.

A barycenter (or Fréchet mean) is a time series \(b\) which minimizes
the sum of squared distances to the time series of a given data set \(x\):


\[\min \sum_i d( b, x_i )^2\]

Only the methods dtw_barycenter_averaging() and
softdtw_barycenter() can operate on variable-length time-series
(see here).

See the barycenter examples
for an overview.

Functions



	euclidean_barycenter(X[, weights])

	Standard Euclidean barycenter computed from a set of time series.



	dtw_barycenter_averaging(X[, ...])

	DTW Barycenter Averaging (DBA) method estimated through Expectation-Maximization algorithm.



	dtw_barycenter_averaging_subgradient(X[, ...])

	DTW Barycenter Averaging (DBA) method estimated through subgradient descent algorithm.



	softdtw_barycenter(X[, gamma, weights, ...])

	Compute barycenter (time series averaging) under the soft-DTW [1] geometry.
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tslearn.barycenters.euclidean_barycenter


	
tslearn.barycenters.euclidean_barycenter(X, weights=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/barycenters/euclidean.py#L9-L44]

	Standard Euclidean barycenter computed from a set of time series.


	Parameters:

	
	Xarray-like, shape=(n_ts, sz, d)
	Time series dataset.



	weights: None or array
	Weights of each X[i]. Must be the same size as len(X).
If None, uniform weights are used.







	Returns:

	
	numpy.array of shape (sz, d)
	Barycenter of the provided time series dataset.









Notes

This method requires a dataset of equal-sized time series

Examples

>>> time_series = [[1, 2, 3, 4], [1, 2, 4, 5]]
>>> bar = euclidean_barycenter(time_series)
>>> bar.shape
(4, 1)
>>> bar
array([[1. ],
       [2. ],
       [3.5],
       [4.5]])










Examples using tslearn.barycenters.euclidean_barycenter

[image: ]Barycenters

  Barycenters








            

          

      

      

    

  

  
    
    

    tslearn.barycenters.dtw_barycenter_averaging
    

    

    

    

    

    
 
  

    
      
          
            
  
tslearn.barycenters.dtw_barycenter_averaging


	
tslearn.barycenters.dtw_barycenter_averaging(X, barycenter_size=None, init_barycenter=None, max_iter=30, tol=1e-05, weights=None, metric_params=None, verbose=False, n_init=1)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/barycenters/dba.py#L394-L511]

	DTW Barycenter Averaging (DBA) method estimated through
Expectation-Maximization algorithm.

DBA was originally presented in [1].
This implementation is based on a idea from [2] (Majorize-Minimize Mean
Algorithm).


	Parameters:

	
	Xarray-like, shape=(n_ts, sz, d)
	Time series dataset.



	barycenter_sizeint or None (default: None)
	Size of the barycenter to generate. If None, the size of the barycenter
is that of the data provided at fit
time or that of the initial barycenter if specified.



	init_barycenterarray or None (default: None)
	Initial barycenter to start from for the optimization process.



	max_iterint (default: 30)
	Number of iterations of the Expectation-Maximization optimization
procedure.



	tolfloat (default: 1e-5)
	Tolerance to use for early stopping: if the decrease in cost is lower
than this value, the
Expectation-Maximization procedure stops.



	weights: None or array
	Weights of each X[i]. Must be the same size as len(X).
If None, uniform weights are used.



	metric_params: dict or None (default: None)
	DTW constraint parameters to be used.
See tslearn.metrics.dtw_path for
a list of accepted parameters
If None, no constraint is used for DTW computations.



	verboseboolean (default: False)
	Whether to print information about the cost at each iteration or not.



	n_initint (default: 1)
	Number of different initializations to be tried (useful only is
init_barycenter is set to None, otherwise, all trials will reach the
same performance)







	Returns:

	
	numpy.array of shape (barycenter_size, d) or (sz, d) if barycenter_size             is None
	DBA barycenter of the provided time series dataset.









References
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Recognition, Elsevier, 2011, Vol. 44, Num. 3, pp. 678-693




[2]
D. Schultz and B. Jain. Nonsmooth Analysis and Subgradient Methods
for Averaging in Dynamic Time Warping Spaces.
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Examples

>>> time_series = [[1, 2, 3, 4], [1, 2, 4, 5]]
>>> dtw_barycenter_averaging(time_series, max_iter=5)
array([[1. ],
       [2. ],
       [3.5],
       [4.5]])
>>> time_series = [[1, 2, 3, 4], [1, 2, 3, 4, 5]]
>>> dtw_barycenter_averaging(time_series, max_iter=5)
array([[1. ],
       [2. ],
       [3. ],
       [4. ],
       [4.5]])
>>> dtw_barycenter_averaging(time_series, max_iter=5,
...                          metric_params={"itakura_max_slope": 2})
array([[1. ],
       [2. ],
       [3. ],
       [3.5],
       [4.5]])
>>> dtw_barycenter_averaging(time_series, max_iter=5, barycenter_size=3)
array([[1.5       ],
       [3.        ],
       [4.33333333]])
>>> dtw_barycenter_averaging([[0, 0, 0], [10, 10, 10]], max_iter=1,
...                          weights=numpy.array([0.75, 0.25]))
array([[2.5],
       [2.5],
       [2.5]])










Examples using tslearn.barycenters.dtw_barycenter_averaging
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    tslearn.barycenters.dtw_barycenter_averaging_subgradient
    

    

    

    

    

    
 
  

    
      
          
            
  
tslearn.barycenters.dtw_barycenter_averaging_subgradient


	
tslearn.barycenters.dtw_barycenter_averaging_subgradient(X, barycenter_size=None, init_barycenter=None, max_iter=30, initial_step_size=0.05, final_step_size=0.005, tol=1e-05, random_state=None, weights=None, metric_params=None, verbose=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/barycenters/dba.py#L607-L740]

	DTW Barycenter Averaging (DBA) method estimated through subgradient
descent algorithm.

DBA was originally presented in [1].
This implementation is based on a idea from [2] (Stochastic Subgradient
Mean Algorithm).


	Parameters:

	
	Xarray-like, shape=(n_ts, sz, d)
	Time series dataset.



	barycenter_sizeint or None (default: None)
	Size of the barycenter to generate. If None, the size of the barycenter
is that of the data provided at fit
time or that of the initial barycenter if specified.



	init_barycenterarray or None (default: None)
	Initial barycenter to start from for the optimization process.



	max_iterint (default: 30)
	Number of iterations of the Expectation-Maximization optimization
procedure.



	initial_step_sizefloat (default: 0.05)
	Initial step size for the subgradient descent algorithm.
Default value is the one suggested in [2].



	final_step_sizefloat (default: 0.005)
	Final step size for the subgradient descent algorithm.
Default value is the one suggested in [2].



	tolfloat (default: 1e-5)
	Tolerance to use for early stopping: if the decrease in cost is lower
than this value, the
Expectation-Maximization procedure stops.



	random_stateint, RandomState instance or None, optional (default=None)
	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.



	weights: None or array
	Weights of each X[i]. Must be the same size as len(X).
If None, uniform weights are used.



	metric_params: dict or None (default: None)
	DTW constraint parameters to be used.
See tslearn.metrics.dtw_path for
a list of accepted parameters
If None, no constraint is used for DTW computations.



	verboseboolean (default: False)
	Whether to print information about the cost at each iteration or not.







	Returns:

	
	numpy.array of shape (barycenter_size, d) or (sz, d) if barycenter_size             is None
	DBA barycenter of the provided time series dataset.
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Examples

>>> time_series = [[1, 2, 3, 4], [1, 2, 4, 5]]
>>> dtw_barycenter_averaging_subgradient(
...     time_series,
...     max_iter=10,
...     random_state=0
... )  
array([[1. ],
       [2. ],
       [3.5...],
       [4.5...]])










Examples using tslearn.barycenters.dtw_barycenter_averaging_subgradient
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tslearn.barycenters.softdtw_barycenter


	
tslearn.barycenters.softdtw_barycenter(X, gamma=1.0, weights=None, method='L-BFGS-B', tol=0.001, max_iter=50, init=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/barycenters/softdtw.py#L36-L113]

	Compute barycenter (time series averaging) under the soft-DTW [1]
geometry.

Soft-DTW was originally presented in [1].


	Parameters:

	
	Xarray-like, shape=(n_ts, sz, d)
	Time series dataset.



	gamma: float
	Regularization parameter.
Lower is less smoothed (closer to true DTW).



	weights: None or array
	Weights of each X[i]. Must be the same size as len(X).
If None, uniform weights are used.



	method: string
	Optimization method, passed to scipy.optimize.minimize.
Default: L-BFGS.



	tol: float
	Tolerance of the method used.



	max_iter: int
	Maximum number of iterations.



	init: array or None (default: None)
	Initial barycenter to start from for the optimization process.
If None, euclidean barycenter is used as a starting point.







	Returns:

	
	numpy.array of shape (bsz, d) where bsz is the size of the init array             if provided or sz otherwise
	Soft-DTW barycenter of the provided time series dataset.









References



[1]
M. Cuturi, M. Blondel “Soft-DTW: a Differentiable Loss Function for
Time-Series,” ICML 2017.





Examples

>>> time_series = [[1, 2, 3, 4], [1, 2, 4, 5]]
>>> softdtw_barycenter(time_series, max_iter=5)
array([[1.25161574],
       [2.03821705],
       [3.5101956 ],
       [4.36140605]])
>>> time_series = [[1, 2, 3, 4], [1, 2, 3, 4, 5]]
>>> softdtw_barycenter(time_series, max_iter=5)
array([[1.21349933],
       [1.8932251 ],
       [2.67573269],
       [3.51057026],
       [4.33645802]])










Examples using tslearn.barycenters.softdtw_barycenter
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tslearn.clustering

The tslearn.clustering module gathers time series specific clustering
algorithms.


	User guide: See the Clustering section for further 
	details.





Classes



	KernelKMeans([n_clusters, kernel, max_iter, ...])

	Kernel K-means.



	KShape([n_clusters, max_iter, tol, n_init, ...])

	KShape clustering for time series.



	TimeSeriesKMeans([n_clusters, max_iter, ...])

	K-means clustering for time-series data.






Functions



	silhouette_score(X, labels[, metric, ...])

	Compute the mean Silhouette Coefficient of all samples (cf.
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tslearn.clustering.KernelKMeans


	
class tslearn.clustering.KernelKMeans(n_clusters=3, kernel='gak', max_iter=50, tol=1e-06, n_init=1, kernel_params=None, n_jobs=None, verbose=0, random_state=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kmeans.py#L145-L461]

	Kernel K-means.


	Parameters:

	
	n_clustersint (default: 3)
	Number of clusters to form.



	kernelstring, or callable (default: “gak”)
	The kernel should either be “gak”, in which case the Global Alignment
Kernel from [2] is used or a value that is accepted as a metric
by scikit-learn’s pairwise_kernels [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_kernels.html]



	max_iterint (default: 50)
	Maximum number of iterations of the k-means algorithm for a single run.



	tolfloat (default: 1e-6)
	Inertia variation threshold. If at some point, inertia varies less than
this threshold between two consecutive
iterations, the model is considered to have converged and the algorithm
stops.



	n_initint (default: 1)
	Number of time the k-means algorithm will be run with different
centroid seeds. The final results will be the
best output of n_init consecutive runs in terms of inertia.



	kernel_paramsdict or None (default: None)
	Kernel parameters to be passed to the kernel function.
None means no kernel parameter is set.
For Global Alignment Kernel, the only parameter of interest is sigma.
If set to ‘auto’, it is computed based on a sampling of the training
set
(cf tslearn.metrics.sigma_gak).
If no specific value is set for sigma, its defaults to 1.



	n_jobsint or None, optional (default=None)
	The number of jobs to run in parallel for GAK cross-similarity matrix
computations.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learns’
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.



	verboseint (default: 0)
	If nonzero, joblib progress messages are printed.



	random_stateinteger or numpy.RandomState, optional
	Generator used to initialize the centers. If an integer is given, it
fixes the seed. Defaults to the global
numpy random number generator.







	Attributes:

	
	labels_numpy.ndarray
	Labels of each point



	inertia_float
	Sum of distances of samples to their closest cluster center (computed
using the kernel trick).



	sample_weight_numpy.ndarray
	The weight given to each sample from the data provided to fit.



	n_iter_int
	The number of iterations performed during fit.









Notes

The training data are saved to disk if this model is
serialized and may result in a large model file if the training
dataset is large.

References



[1]
Kernel k-means, Spectral Clustering and Normalized Cuts.
Inderjit S. Dhillon, Yuqiang Guan, Brian Kulis. KDD 2004.




[2]
Fast Global Alignment Kernels. Marco Cuturi. ICML 2011.





Examples

>>> from tslearn.generators import random_walks
>>> X = random_walks(n_ts=50, sz=32, d=1)
>>> gak_km = KernelKMeans(n_clusters=3, kernel="gak", random_state=0)
>>> gak_km.fit(X)  
KernelKMeans(...)
>>> print(numpy.unique(gak_km.labels_))
[0 1 2]





Methods



	fit(X[, y, sample_weight])

	Compute kernel k-means clustering.



	fit_predict(X[, y])

	Fit kernel k-means clustering using X and then predict the closest cluster each time series in X belongs to.



	from_hdf5(path)

	Load model from a HDF5 file.



	from_json(path)

	Load model from a JSON file.



	from_pickle(path)

	Load model from a pickle file.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	predict(X)

	Predict the closest cluster each time series in X belongs to.



	set_fit_request(*[, sample_weight])

	Request metadata passed to the fit method.



	set_params(**params)

	Set the parameters of this estimator.



	to_hdf5(path)

	Save model to a HDF5 file.



	to_json(path)

	Save model to a JSON file.



	to_pickle(path)

	Save model to a pickle file.







	
fit(X, y=None, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kmeans.py#L326-L391]

	Compute kernel k-means clustering.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.



	y
	Ignored



	sample_weightarray-like of shape=(n_ts, ) or None (default: None)
	Weights to be given to time series in the learning process. By
default, all time series weights are equal.














	
fit_predict(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kmeans.py#L416-L436]

	Fit kernel k-means clustering using X and then predict the closest
cluster each time series in X belongs to.

It is more efficient to use this method than to sequentially call fit
and predict.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset to predict.



	y
	Ignored







	Returns:

	
	labelsarray of shape=(n_ts, )
	Index of the cluster each sample belongs to.














	
classmethod from_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L185-L211]

	Load model from a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L226-L259]

	Load model from a JSON file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L274-L290]

	Load model from a pickle file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kmeans.py#L438-L458]

	Predict the closest cluster each time series in X belongs to.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset to predict.







	Returns:

	
	labelsarray of shape=(n_ts, )
	Index of the cluster each sample belongs to.














	
set_fit_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → KernelKMeans[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the fit method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to fit.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in fit.







	Returns:

	
	selfobject
	The updated object.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
to_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L164-L183]

	Save model to a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full file path. File must not already exist.







	Raises:

	
	FileExistsError
	If a file with the same path already exists.














	
to_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L213-L224]

	Save model to a JSON file.


	Parameters:

	
	pathstr
	Full file path.














	
to_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L261-L272]

	Save model to a pickle file.


	Parameters:

	
	pathstr
	Full file path.


















Examples using tslearn.clustering.KernelKMeans
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tslearn.clustering.KShape


	
class tslearn.clustering.KShape(n_clusters=3, max_iter=100, tol=1e-06, n_init=1, verbose=False, random_state=None, init='random')[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kshape.py#L21-L291]

	KShape clustering for time series.

KShape was originally presented in [1].


	Parameters:

	
	n_clustersint (default: 3)
	Number of clusters to form.



	max_iterint (default: 100)
	Maximum number of iterations of the k-Shape algorithm.



	tolfloat (default: 1e-6)
	Inertia variation threshold. If at some point, inertia varies less than
this threshold between two consecutive
iterations, the model is considered to have converged and the algorithm
stops.



	n_initint (default: 1)
	Number of time the k-Shape algorithm will be run with different
centroid seeds. The final results will be the
best output of n_init consecutive runs in terms of inertia.



	verbosebool (default: False)
	Whether or not to print information about the inertia while learning
the model.



	random_stateinteger or numpy.RandomState, optional
	Generator used to initialize the centers. If an integer is given, it
fixes the seed. Defaults to the global
numpy random number generator.



	init{‘random’ or ndarray} (default: ‘random’)
	Method for initialization.
‘random’: choose k observations (rows) at random from data for the
initial centroids.
If an ndarray is passed, it should be of shape (n_clusters, ts_size, d)
and gives the initial centers.







	Attributes:

	
	cluster_centers_numpy.ndarray of shape (sz, d).
	Centroids



	labels_numpy.ndarray of integers with shape (n_ts, ).
	Labels of each point



	inertia_float
	Sum of distances of samples to their closest cluster center.



	n_iter_int
	The number of iterations performed during fit.









Notes

This method requires a dataset of equal-sized time series.

References



[1]
J. Paparrizos & L. Gravano. k-Shape: Efficient and Accurate
Clustering of Time Series. SIGMOD 2015. pp. 1855-1870.





Examples

>>> from tslearn.generators import random_walks
>>> X = random_walks(n_ts=50, sz=32, d=1)
>>> X = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X)
>>> ks = KShape(n_clusters=3, n_init=1, random_state=0).fit(X)
>>> ks.cluster_centers_.shape
(3, 32, 1)





Methods



	fit(X[, y])

	Compute k-Shape clustering.



	fit_predict(X[, y])

	Fit k-Shape clustering using X and then predict the closest cluster each time series in X belongs to.



	from_hdf5(path)

	Load model from a HDF5 file.



	from_json(path)

	Load model from a JSON file.



	from_pickle(path)

	Load model from a pickle file.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	predict(X)

	Predict the closest cluster each time series in X belongs to.



	set_params(**params)

	Set the parameters of this estimator.



	to_hdf5(path)

	Save model to a HDF5 file.



	to_json(path)

	Save model to a JSON file.



	to_pickle(path)

	Save model to a pickle file.







	
fit(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kshape.py#L194-L247]

	Compute k-Shape clustering.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.



	y
	Ignored














	
fit_predict(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kshape.py#L249-L269]

	Fit k-Shape clustering using X and then predict the closest cluster
each time series in X belongs to.

It is more efficient to use this method than to sequentially call fit
and predict.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset to predict.



	y
	Ignored







	Returns:

	
	labelsarray of shape=(n_ts, )
	Index of the cluster each sample belongs to.














	
classmethod from_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L185-L211]

	Load model from a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L226-L259]

	Load model from a JSON file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L274-L290]

	Load model from a pickle file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kshape.py#L271-L291]

	Predict the closest cluster each time series in X belongs to.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset to predict.







	Returns:

	
	labelsarray of shape=(n_ts, )
	Index of the cluster each sample belongs to.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
to_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L164-L183]

	Save model to a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full file path. File must not already exist.







	Raises:

	
	FileExistsError
	If a file with the same path already exists.














	
to_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L213-L224]

	Save model to a JSON file.


	Parameters:

	
	pathstr
	Full file path.














	
to_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L261-L272]

	Save model to a pickle file.


	Parameters:

	
	pathstr
	Full file path.


















Examples using tslearn.clustering.KShape
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tslearn.clustering.TimeSeriesKMeans


	
class tslearn.clustering.TimeSeriesKMeans(n_clusters=3, max_iter=50, tol=1e-06, n_init=1, metric='euclidean', max_iter_barycenter=100, metric_params=None, n_jobs=None, dtw_inertia=False, verbose=0, random_state=None, init='k-means++')[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kmeans.py#L464-L906]

	K-means clustering for time-series data.


	Parameters:

	
	n_clustersint (default: 3)
	Number of clusters to form.



	max_iterint (default: 50)
	Maximum number of iterations of the k-means algorithm for a single run.



	tolfloat (default: 1e-6)
	Inertia variation threshold. If at some point, inertia varies less than
this threshold between two consecutive
iterations, the model is considered to have converged and the algorithm
stops.



	n_initint (default: 1)
	Number of time the k-means algorithm will be run with different
centroid seeds. The final results will be the best output of n_init
consecutive runs in terms of inertia.



	metric{“euclidean”, “dtw”, “softdtw”} (default: “euclidean”)
	Metric to be used for both cluster assignment and barycenter
computation. If “dtw”, DBA is used for barycenter
computation.



	max_iter_barycenterint (default: 100)
	Number of iterations for the barycenter computation process. Only used
if metric=”dtw” or metric=”softdtw”.



	metric_paramsdict or None (default: None)
	Parameter values for the chosen metric.
For metrics that accept parallelization of the cross-distance matrix
computations, n_jobs key passed in metric_params is overridden by
the n_jobs argument.



	n_jobsint or None, optional (default=None)
	The number of jobs to run in parallel for cross-distance matrix
computations.
Ignored if the cross-distance matrix cannot be computed using
parallelization.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learns’
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.



	dtw_inertia: bool (default: False)
	Whether to compute DTW inertia even if DTW is not the chosen metric.



	verboseint (default: 0)
	If nonzero, print information about the inertia while learning
the model and joblib progress messages are printed.



	random_stateinteger or numpy.RandomState, optional
	Generator used to initialize the centers. If an integer is given, it
fixes the seed. Defaults to the global
numpy random number generator.



	init{‘k-means++’, ‘random’ or an ndarray} (default: ‘k-means++’)
	Method for initialization:
‘k-means++’ : use k-means++ heuristic. See scikit-learn’s k_init_ [https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/cluster/k_means_.py] for more.
‘random’: choose k observations (rows) at random from data for the
initial centroids.
If an ndarray is passed, it should be of shape (n_clusters, ts_size, d)
and gives the initial centers.







	Attributes:

	
	labels_numpy.ndarray
	Labels of each point.



	cluster_centers_numpy.ndarray of shape (n_clusters, sz, d)
	Cluster centers.
sz is the size of the time series used at fit time if the init method
is ‘k-means++’ or ‘random’, and the size of the longest initial
centroid if those are provided as a numpy array through init parameter.



	inertia_float
	Sum of distances of samples to their closest cluster center.



	n_iter_int
	The number of iterations performed during fit.









Notes

If metric is set to “euclidean”, the algorithm expects a dataset of
equal-sized time series.

Examples

>>> from tslearn.generators import random_walks
>>> X = random_walks(n_ts=50, sz=32, d=1)
>>> km = TimeSeriesKMeans(n_clusters=3, metric="euclidean", max_iter=5,
...                       random_state=0).fit(X)
>>> km.cluster_centers_.shape
(3, 32, 1)
>>> km_dba = TimeSeriesKMeans(n_clusters=3, metric="dtw", max_iter=5,
...                           max_iter_barycenter=5,
...                           random_state=0).fit(X)
>>> km_dba.cluster_centers_.shape
(3, 32, 1)
>>> km_sdtw = TimeSeriesKMeans(n_clusters=3, metric="softdtw", max_iter=5,
...                            max_iter_barycenter=5,
...                            metric_params={"gamma": .5},
...                            random_state=0).fit(X)
>>> km_sdtw.cluster_centers_.shape
(3, 32, 1)
>>> X_bis = to_time_series_dataset([[1, 2, 3, 4],
...                                 [1, 2, 3],
...                                 [2, 5, 6, 7, 8, 9]])
>>> km = TimeSeriesKMeans(n_clusters=2, max_iter=5,
...                       metric="dtw", random_state=0).fit(X_bis)
>>> km.cluster_centers_.shape
(2, 6, 1)





Methods



	fit(X[, y])

	Compute k-means clustering.



	fit_predict(X[, y])

	Fit k-means clustering using X and then predict the closest cluster each time series in X belongs to.



	fit_transform(X[, y])

	Fit to data, then transform it.



	from_hdf5(path)

	Load model from a HDF5 file.



	from_json(path)

	Load model from a JSON file.



	from_pickle(path)

	Load model from a pickle file.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	predict(X)

	Predict the closest cluster each time series in X belongs to.



	set_output(*[, transform])

	Set output container.



	set_params(**params)

	Set the parameters of this estimator.



	to_hdf5(path)

	Save model to a HDF5 file.



	to_json(path)

	Save model to a JSON file.



	to_pickle(path)

	Save model to a pickle file.



	transform(X)

	Transform X to a cluster-distance space.







	
fit(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kmeans.py#L764-L831]

	Compute k-means clustering.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.



	y
	Ignored














	
fit_predict(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kmeans.py#L833-L854]

	Fit k-means clustering using X and then predict the closest cluster
each time series in X belongs to.

It is more efficient to use this method than to sequentially call fit
and predict.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset to predict.



	y
	Ignored







	Returns:

	
	labelsarray of shape=(n_ts, )
	Index of the cluster each sample belongs to.














	
fit_transform(X, y=None, **fit_params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L888-L919]

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters:

	
	Xarray-like of shape (n_samples, n_features)
	Input samples.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs),                 default=None
	Target values (None for unsupervised transformations).



	**fit_paramsdict
	Additional fit parameters.







	Returns:

	
	X_newndarray array of shape (n_samples, n_features_new)
	Transformed array.














	
classmethod from_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L185-L211]

	Load model from a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L226-L259]

	Load model from a JSON file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L274-L290]

	Load model from a pickle file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/kmeans.py#L856-L877]

	Predict the closest cluster each time series in X belongs to.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset to predict.







	Returns:

	
	labelsarray of shape=(n_ts, )
	Index of the cluster each sample belongs to.














	
set_output(*, transform=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L230-L258]

	Set output container.

See Introducing the set_output API [https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py]
for an example on how to use the API.


	Parameters:

	
	transform{“default”, “pandas”}, default=None
	Configure output of transform and fit_transform.


	“default”: Default output format of a transformer


	“pandas”: DataFrame output


	None: Transform configuration is unchanged










	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
to_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L164-L183]

	Save model to a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full file path. File must not already exist.







	Raises:

	
	FileExistsError
	If a file with the same path already exists.














	
to_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L213-L224]

	Save model to a JSON file.


	Parameters:

	
	pathstr
	Full file path.














	
to_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L261-L272]

	Save model to a pickle file.


	Parameters:

	
	pathstr
	Full file path.














	
transform(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L879-L903]

	Transform X to a cluster-distance space.

In the new space, each dimension is the distance to the cluster
centers.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset







	Returns:

	
	distancesarray of shape=(n_ts, n_clusters)
	Distances to cluster centers


















Examples using tslearn.clustering.TimeSeriesKMeans
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tslearn.clustering.silhouette_score


	
tslearn.clustering.silhouette_score(X, labels, metric=None, sample_size=None, metric_params=None, n_jobs=None, verbose=0, random_state=None, **kwds)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/clustering/utils.py#L66-L199]

	Compute the mean Silhouette Coefficient of all samples (cf.  [1] and
[2]).

Read more in the scikit-learn documentation [http://scikit-learn.org/stable/modules/clustering.html#silhouette-coefficient].


	Parameters:

	
	Xarray [n_ts, n_ts] if metric == “precomputed”, or,              [n_ts, sz, d] otherwise
	Array of pairwise distances between time series, or a time series
dataset.



	labelsarray, shape = [n_ts]
	Predicted labels for each time series.



	metricstring, callable or None (default: None)
	The metric to use when calculating distance between time series.
Should be one of {‘dtw’, ‘softdtw’, ‘euclidean’} or a callable distance
function or None.
If ‘softdtw’ is passed, a normalized version of Soft-DTW is used that
is defined as sdtw_(x,y) := sdtw(x,y) - 1/2(sdtw(x,x)+sdtw(y,y)).
If X is the distance array itself, use metric="precomputed".
If None, dtw is used.



	sample_sizeint or None (default: None)
	The size of the sample to use when computing the Silhouette Coefficient
on a random subset of the data.
If sample_size is None, no sampling is used.



	metric_paramsdict or None (default: None)
	Parameter values for the chosen metric.
For metrics that accept parallelization of the cross-distance matrix
computations, n_jobs key passed in metric_params is overridden by
the n_jobs argument.



	n_jobsint or None, optional (default=None)
	The number of jobs to run in parallel for cross-distance matrix
computations.
Ignored if the cross-distance matrix cannot be computed using
parallelization.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learns’
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.



	verboseint (default: 0)
	If nonzero, print information about the inertia while learning
the model and joblib progress messages are printed.



	random_stateint, RandomState instance or None, optional (default: None)
	The generator used to randomly select a subset of samples.  If int,
random_state is the seed used by the random number generator; If
RandomState instance, random_state is the random number generator; If
None, the random number generator is the RandomState instance used by
np.random. Used when sample_size is not None.



	**kwdsoptional keyword parameters
	Any further parameters are passed directly to the distance function,
just as for the metric_params parameter.







	Returns:

	
	silhouettefloat
	Mean Silhouette Coefficient for all samples.









References



[1]
Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the
Interpretation and Validation of Cluster Analysis”. Computational
and Applied Mathematics 20: 53-65. [http://www.sciencedirect.com/science/article/pii/0377042787901257]




[2]
Wikipedia entry on the Silhouette Coefficient [https://en.wikipedia.org/wiki/Silhouette_(clustering)]





Examples

>>> from tslearn.generators import random_walks
>>> from tslearn.metrics import cdist_dtw
>>> from tslearn.metrics import dtw
>>> numpy.random.seed(0)
>>> X = random_walks(n_ts=20, sz=16, d=1)
>>> labels = numpy.random.randint(2, size=20)
>>> silhouette_score(X, labels, metric="dtw")  
0.13383800...
>>> silhouette_score(X, labels, metric="euclidean")  
0.09126917...
>>> silhouette_score(X, labels, metric="softdtw")  
0.17953934...
>>> silhouette_score(X, labels, metric="softdtw",
...                  metric_params={"gamma": 2.})     
0.17591060...
>>> silhouette_score(cdist_dtw(X), labels,
...                  metric="precomputed")  
0.13383800...
>>> silhouette_score(X, labels, metric=dtw)  
0.13383800...
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tslearn.datasets

The tslearn.datasets module provides simplified access to standard time
series datasets.

Classes



	UCR_UEA_datasets([use_cache])

	A convenience class to access UCR/UEA time series datasets.



	CachedDatasets()

	A convenience class to access cached time series datasets.
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tslearn.datasets.UCR_UEA_datasets


	
class tslearn.datasets.UCR_UEA_datasets(use_cache=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/ucr_uea.py#L11-L348]

	A convenience class to access UCR/UEA time series datasets.

When using one (or several) of these datasets in research projects, please
cite [1].

This class will attempt to recover from some known misnamed files, like the
StarLightCurves dataset being provided in StarlightCurves.zip and
alike.


	Parameters:

	
	use_cachebool (default: True)
	Whether a cached version of the dataset should be used in
load_dataset(), if one is found.
Datasets are always cached upon loading, and this parameter only
determines whether the cached version shall be refreshed upon loading.










See also


	CachedDatasets
	Provides pre-selected datasets for offline use.







Notes

Downloading dataset files can be time-consuming, it is recommended
using use_cache=True (default) in order to only experience
downloading time once per dataset and work on a cached version of the
datasets afterward.

References



[1]
A. Bagnall, J. Lines, W. Vickers and E. Keogh, The UEA & UCR Time
Series Classification Repository, www.timeseriesclassification.com





Methods



	baseline_accuracy([list_datasets, list_methods])

	Report baseline performances as provided by UEA/UCR website (for univariate datasets only).



	cache_all()

	Cache all datasets from the UCR/UEA archive for later use.



	list_cached_datasets()

	List datasets from the UCR/UEA archive that are available in cache.



	list_datasets()

	List datasets (both univariate and multivariate) available in the  UCR/UEA archive.



	list_multivariate_datasets()

	List multivariate datasets in the UCR/UEA archive.



	list_univariate_datasets()

	List univariate datasets in the UCR/UEA archive.



	load_dataset(dataset_name)

	Load a dataset from the UCR/UEA archive from its name.







	
baseline_accuracy(list_datasets=None, list_methods=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/ucr_uea.py#L84-L132]

	Report baseline performances as provided by UEA/UCR website (for
univariate datasets only).


	Parameters:

	
	list_datasets: list or None (default: None)
	A list of strings indicating for which datasets performance should
be reported.
If None, performance is reported for all datasets.



	list_methods: list or None (default: None)
	A list of baselines methods for which performance should be
reported.
If None, performance for all baseline methods is reported.







	Returns:

	
	dict
	A dictionary in which keys are dataset names and associated values
are themselves dictionaries that provide accuracy scores for the
requested methods.









Examples

>>> uea_ucr = UCR_UEA_datasets()
>>> dict_acc = uea_ucr.baseline_accuracy(
...         list_datasets=["Adiac", "ChlorineConcentration"],
...         list_methods=["C45"])
>>> len(dict_acc)
2
>>> dict_acc["Adiac"]  
{'C45': 0.542199...}
>>> all_dict_acc = uea_ucr.baseline_accuracy()
>>> len(all_dict_acc)
85










	
cache_all()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/ucr_uea.py#L340-L348]

	Cache all datasets from the UCR/UEA archive for later use.






	
list_cached_datasets()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/ucr_uea.py#L196-L208]

	List datasets from the UCR/UEA archive that are available in cache.

Examples

>>> beetlefly = UCR_UEA_datasets().load_dataset("BeetleFly")
>>> l = UCR_UEA_datasets().list_cached_datasets()
>>> "BeetleFly" in l
True










	
list_datasets()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/ucr_uea.py#L174-L194]

	List datasets (both univariate and multivariate) available in the 
UCR/UEA archive.


	Returns:

	
	list of str:
	A list of names of all (univariate and multivariate) dataset namas.









Examples

>>> l = UCR_UEA_datasets().list_datasets()
>>> "PenDigits" in l
True
>>> "BeetleFly" in l
True
>>> "DatasetThatDoesNotExist" in l
False










	
list_multivariate_datasets()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/ucr_uea.py#L154-L172]

	List multivariate datasets in the UCR/UEA archive.


	Returns:

	
	list of str:
	A list of the names of all multivariate dataset namas.









Examples

>>> l = UCR_UEA_datasets().list_multivariate_datasets()
>>> "PenDigits" in l
True










	
list_univariate_datasets()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/ucr_uea.py#L134-L152]

	List univariate datasets in the UCR/UEA archive.


	Returns:

	
	list of str:
	A list of the names of all univariate datasets.









Examples

>>> l = UCR_UEA_datasets().list_univariate_datasets()
>>> len(l)
85










	
load_dataset(dataset_name)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/ucr_uea.py#L210-L309]

	Load a dataset from the UCR/UEA archive from its name.

On failure, None is returned for each of the four values and a
RuntimeWarning is printed.


	Parameters:

	
	dataset_namestr
	Name of the dataset. Should be in the list returned by
list_datasets







	Returns:

	
	numpy.ndarray of shape (n_ts_train, sz, d) or None
	Training time series. None if unsuccessful.



	numpy.ndarray of integers or strings with shape (n_ts_train, ) or None
	Training labels. None if unsuccessful.



	numpy.ndarray of shape (n_ts_test, sz, d) or None
	Test time series. None if unsuccessful.



	numpy.ndarray of integers or strings with shape (n_ts_test, ) or None
	Test labels. None if unsuccessful.









Examples

>>> data_loader = UCR_UEA_datasets()
>>> X_train, y_train, X_test, y_test = data_loader.load_dataset(
...         "TwoPatterns")
>>> X_train.shape
(1000, 128, 1)
>>> y_train.shape
(1000,)
>>> X_train, y_train, X_test, y_test = data_loader.load_dataset(
...         "Adiac")
>>> X_train.shape
(390, 176, 1)
>>> X_train, y_train, X_test, y_test = data_loader.load_dataset(
...         "PenDigits")
>>> X_train.shape
(7494, 8, 2)
>>> assert (None, None, None, None) == data_loader.load_dataset(
...         "DatasetThatDoesNotExist")














Examples using tslearn.datasets.UCR_UEA_datasets

[image: ]
1-NN with SAX + MINDIST

  1-NN with SAX + MINDIST


[image: ]Early Classification

  Early Classification
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tslearn.datasets.CachedDatasets


	
class tslearn.datasets.CachedDatasets[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/cached.py#L4-L87]

	A convenience class to access cached time series datasets.

Note, that these cached datasets are statically included into tslearn
and are distinct from the ones in UCR_UEA_datasets.

When using the Trace dataset, please cite [1].


See also


	UCR_UEA_datasets
	Provides more datasets and supports caching.







References



[1]
A. Bagnall, J. Lines, W. Vickers and E. Keogh, The UEA & UCR Time
Series Classification Repository, www.timeseriesclassification.com





Methods



	list_datasets()

	List cached datasets.



	load_dataset(dataset_name)

	Load a cached dataset from its name.







	
list_datasets()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/cached.py#L26-L45]

	List cached datasets.


	Returns:

	
	list of str:
	A list of names of all cached (univariate and multivariate) dataset
namas.









Examples

>>> from tslearn.datasets import UCR_UEA_datasets
>>> _ = UCR_UEA_datasets().load_dataset("Trace")
>>> cached = UCR_UEA_datasets().list_cached_datasets()
>>> "Trace" in cached
True










	
load_dataset(dataset_name)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/datasets/cached.py#L47-L87]

	Load a cached dataset from its name.


	Parameters:

	
	dataset_namestr
	Name of the dataset. Should be in the list returned by
list_datasets().







	Returns:

	
	numpy.ndarray of shape (n_ts_train, sz, d) or None
	Training time series. None if unsuccessful.



	numpy.ndarray of integers with shape (n_ts_train, ) or None
	Training labels. None if unsuccessful.



	numpy.ndarray of shape (n_ts_test, sz, d) or None
	Test time series. None if unsuccessful.



	numpy.ndarray of integers with shape (n_ts_test, ) or None
	Test labels. None if unsuccessful.







	Raises:

	
	IOError
	If the dataset does not exist or cannot be read.









Examples

>>> data_loader = CachedDatasets()
>>> X_train, y_train, X_test, y_test = data_loader.load_dataset(
...                                        "Trace")
>>> print(X_train.shape)
(100, 275, 1)
>>> print(y_train.shape)
(100,)














Examples using tslearn.datasets.CachedDatasets

[image: ]k-NN search

  k-NN search


[image: ]Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier

  Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier


[image: ]KShape

  KShape


[image: ]Kernel k-means

  Kernel k-means


[image: ]Barycenters

  Barycenters


[image: ]Soft-DTW weighted barycenters

  Soft-DTW weighted barycenters


[image: ]k-means

  k-means


[image: ]SVM and GAK

  SVM and GAK


[image: ]Learning Shapelets

  Learning Shapelets


[image: ]Aligning discovered shapelets with timeseries

  Aligning discovered shapelets with timeseries


[image: ]Learning Shapelets: decision boundaries in 2D distance space

  Learning Shapelets: decision boundaries in 2D distance space


[image: ]Soft-DTW loss for PyTorch neural network

  Soft-DTW loss for PyTorch neural network


[image: ]Model Persistence

  Model Persistence


[image: ]Distance and Matrix Profiles

  Distance and Matrix Profiles
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tslearn.early_classification

The tslearn.early_classification module gathers early classifiers for
time series.

Such classifiers aim at performing prediction as early as possible (i.e. they
do not necessarily wait for the end of the series before prediction is
triggered).


	User guide: See the Early Classification section for further 
	details.





Classes



	NonMyopicEarlyClassifier([n_clusters, ...])

	Early Classification modelling for time series using the model presented in [R8800ebd43eb3-1].
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tslearn.early_classification.NonMyopicEarlyClassifier


	
class tslearn.early_classification.NonMyopicEarlyClassifier(n_clusters=2, base_classifier=None, min_t=1, lamb=1.0, cost_time_parameter=1.0, random_state=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/early_classification/early_classification.py#L16-L580]

	Early Classification modelling for time series using the model
presented in [1].


	Parameters:

	
	n_clustersint
	Number of clusters to form.



	base_classifierEstimator or None
	Estimator (instance) to be cloned and used for classifications.
If None, the chosen classifier is a 1NN with Euclidean metric.



	min_tint
	Earliest time at which a classification can be performed on a time
series



	lambfloat
	Value of the hyper parameter lambda used during the computation of the
cost function to evaluate the probability
that a time series belongs to a cluster given the time series.



	cost_time_parameterfloat
	Parameter of the cost function of time. This function is of the form :
f(time) = time * cost_time_parameter



	random_state: int
	Random state of the base estimator







	Attributes:

	
	classifiers_list
	A list containing all the classifiers trained for the model, that is,
(maximum_time_stamp - min_t) elements.



	pyhatyck_array like of shape (maximum_time_stamp - min_t, n_cluster, __n_classes, __n_classes)
	Contains the probabilities of being classified as class y_hat given
class y and cluster ck for a trained classifier. The penultimate
dimension of the array is associated to the true
class of the series and the last dimension to the predicted class.



	pyck_array like of shape (__n_classes, n_cluster)
	Contains the probabilities of being of true class y given a cluster ck



	X_fit_dimstuple of the same shape as the training dataset
	







References



[1]
A. Dachraoui, A. Bondu & A. Cornuejols. Early classification of time
series as a non myopic sequential decision making problem.
ECML/PKDD 2015





Examples

>>> dataset = to_time_series_dataset([[1, 2, 3, 4, 5, 6],
...                                   [1, 2, 3, 4, 5, 6],
...                                   [1, 2, 3, 4, 5, 6],
...                                   [1, 2, 3, 3, 2, 1],
...                                   [1, 2, 3, 3, 2, 1],
...                                   [1, 2, 3, 3, 2, 1],
...                                   [3, 2, 1, 1, 2, 3],
...                                   [3, 2, 1, 1, 2, 3]])
>>> y = [0, 0, 0, 1, 1, 1, 0, 0]
>>> model = NonMyopicEarlyClassifier(n_clusters=3, lamb=1000.,
...                                  cost_time_parameter=.1,
...                                  random_state=0)
>>> model.fit(dataset, y)  
NonMyopicEarlyClassifier(...)
>>> print(type(model.classifiers_))
<class 'dict'>
>>> print(model.pyck_)
[[0. 1. 1.]
 [1. 0. 0.]]
>>> preds, pred_times = model.predict_class_and_earliness(dataset)
>>> preds
array([0, 0, 0, 1, 1, 1, 0, 0])
>>> pred_times
array([4, 4, 4, 4, 4, 4, 1, 1])
>>> pred_probas, pred_times = model.predict_proba_and_earliness(dataset)
>>> pred_probas
array([[1., 0.],
       [1., 0.],
       [1., 0.],
       [0., 1.],
       [0., 1.],
       [0., 1.],
       [1., 0.],
       [1., 0.]])
>>> pred_times
array([4, 4, 4, 4, 4, 4, 1, 1])





Methods



	early_classification_cost(X, y)

	Compute early classification score.



	fit(X, y)

	Fit early classifier.



	get_cluster_probas(Xi)

	Compute cluster probability \(P(c_k | Xi)\).



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	predict(X)

	Provide predicted class.



	predict_class_and_earliness(X)

	Provide predicted class as well as prediction timestamps.



	predict_proba(X)

	Probability estimates.



	predict_proba_and_earliness(X)

	Provide probability estimates as well as prediction timestamps.



	score(X, y[, sample_weight])

	Return the mean accuracy on the given test data and labels.



	set_params(**params)

	Set the parameters of this estimator.



	set_score_request(*[, sample_weight])

	Request metadata passed to the score method.







	
early_classification_cost(X, y)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/early_classification/early_classification.py#L519-L574]

	Compute early classification score.

The score is computed as:


\[1 - acc + \alpha \frac{1}{n} \sum_i t_i\]

where \(\alpha\) is the trade-off parameter
(self.cost_time_parameter) and \(t_i\) are prediction timestamps.


	Parameters:

	
	Xarray-like of shape (n_series, n_timestamps, n_features)
	Vector to be scored, where n_series is the number of time series,
n_timestamps is the number of timestamps in the series
and n_features is the number of features recorded at each
timestamp.



	yarray-like, shape = (n_samples) or (n_samples, n_outputs)
	True labels for X.







	Returns:

	
	float
	Early classification cost (a positive number, the lower the better)









Examples

>>> dataset = to_time_series_dataset([[1, 2, 3, 4, 5, 6],
...                                   [1, 2, 3, 4, 5, 6],
...                                   [1, 2, 3, 4, 5, 6],
...                                   [1, 2, 3, 3, 2, 1],
...                                   [1, 2, 3, 3, 2, 1],
...                                   [1, 2, 3, 3, 2, 1],
...                                   [3, 2, 1, 1, 2, 3],
...                                   [3, 2, 1, 1, 2, 3]])
>>> y = [0, 0, 0, 1, 1, 1, 0, 0]
>>> model = NonMyopicEarlyClassifier(n_clusters=3, lamb=1000.,
...                                  cost_time_parameter=.1,
...                                  random_state=0)
>>> model.fit(dataset, y)  
NonMyopicEarlyClassifier(...)
>>> preds, pred_times = model.predict_class_and_earliness(dataset)
>>> preds
array([0, 0, 0, 1, 1, 1, 0, 0])
>>> pred_times
array([4, 4, 4, 4, 4, 4, 1, 1])
>>> model.early_classification_cost(dataset, y)
0.325










	
fit(X, y)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/early_classification/early_classification.py#L128-L211]

	Fit early classifier.


	Parameters:

	
	Xarray-like of shape (n_series, n_timestamps, n_features)
	Training data, where n_series is the number of time series,
n_timestamps is the number of timestamps in the series
and n_features is the number of features recorded at each
timestamp.



	yarray-like of shape (n_samples,)
	Target values. Will be cast to X’s dtype if necessary







	Returns:

	
	selfreturns an instance of self.
	












	
get_cluster_probas(Xi)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/early_classification/early_classification.py#L213-L283]

	Compute cluster probability \(P(c_k | Xi)\).

This quantity is computed using the following formula:


\[P(c_k | Xi) = \frac{s_k(Xi)}{\sum_j s_j(Xi)}\]

where


\[s_k(Xi) = \frac{1}{1 + \exp{-\lambda \Delta_k(Xi)}}\]

with


\[\Delta_k(Xi) = \frac{\bar{D} - d(Xi, c_k)}{\bar{D}}\]

and \(\bar{D}\) is the average of the distances between Xi and
the cluster centers.


	Parameters:

	
	Xi: numpy array, shape (t, d)
	A time series observed up to time t







	Returns:

	
	probasnumpy array, shape (n_clusters, )
	







Examples

>>> from tslearn.utils import to_time_series
>>> dataset = to_time_series_dataset([[1, 2, 3, 4, 5, 6],
...                                   [1, 2, 3, 4, 5, 6],
...                                   [1, 2, 3, 4, 5, 6],
...                                   [1, 2, 3, 3, 2, 1],
...                                   [1, 2, 3, 3, 2, 1],
...                                   [1, 2, 3, 3, 2, 1],
...                                   [3, 2, 1, 1, 2, 3],
...                                   [3, 2, 1, 1, 2, 3]])
>>> y = [0, 0, 0, 1, 1, 1, 0, 0]
>>> ts0 = to_time_series([1, 2])
>>> model = NonMyopicEarlyClassifier(n_clusters=3, lamb=0.,
...                                  random_state=0)
>>> probas = model.fit(dataset, y).get_cluster_probas(ts0)
>>> probas.shape
(3,)
>>> probas  
array([0.33..., 0.33..., 0.33...])
>>> model = NonMyopicEarlyClassifier(n_clusters=3, lamb=10000.,
...                                  random_state=0)
>>> probas = model.fit(dataset, y).get_cluster_probas(ts0)
>>> probas.shape
(3,)
>>> probas
array([0.5, 0.5, 0. ])
>>> ts1 = to_time_series([3, 2])
>>> model.get_cluster_probas(ts1)
array([0., 0., 1.])










	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/early_classification/early_classification.py#L436-L453]

	Provide predicted class.


	Parameters:

	
	Xarray-like of shape (n_series, n_timestamps, n_features)
	Vector to be scored, where n_series is the number of time series,
n_timestamps is the number of timestamps in the series
and n_features is the number of features recorded at each
timestamp.







	Returns:

	
	array, shape (n_samples,)
	Predicted classes.














	
predict_class_and_earliness(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/early_classification/early_classification.py#L401-L434]

	Provide predicted class as well as prediction timestamps.

Prediction timestamps are timestamps at which a prediction is made in
early classification setting.


	Parameters:

	
	Xarray-like of shape (n_series, n_timestamps, n_features)
	Vector to be scored, where n_series is the number of time series,
n_timestamps is the number of timestamps in the series
and n_features is the number of features recorded at each
timestamp.







	Returns:

	
	array, shape (n_samples,)
	Predicted classes.



	array-like of shape (n_series, )
	Prediction timestamps.














	
predict_proba(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/early_classification/early_classification.py#L493-L514]

	Probability estimates.

The returned estimates for all classes are ordered by the
label of classes.


	Parameters:

	
	Xarray-like of shape (n_series, n_timestamps, n_features)
	Vector to be scored, where n_series is the number of time series,
n_timestamps is the number of timestamps in the series
and n_features is the number of features recorded at each
timestamp.







	Returns:

	
	array-like of shape (n_series, n_classes)
	Probability of the sample for each class in the model,
where classes are ordered as they are in self.classes_.














	
predict_proba_and_earliness(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/early_classification/early_classification.py#L455-L491]

	Provide probability estimates as well as prediction timestamps.

Prediction timestamps are timestamps at which a prediction is made in
early classification setting.
The returned estimates for all classes are ordered by the
label of classes.


	Parameters:

	
	Xarray-like of shape (n_series, n_timestamps, n_features)
	Vector to be scored, where n_series is the number of time series,
n_timestamps is the number of timestamps in the series
and n_features is the number of features recorded at each
timestamp.







	Returns:

	
	array-like of shape (n_series, n_classes)
	Probability of the sample for each class in the model,
where classes are ordered as they are in self.classes_.



	array-like of shape (n_series, )
	Prediction timestamps.














	
score(X, y, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L680-L706]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters:

	
	Xarray-like of shape (n_samples, n_features)
	Test samples.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True labels for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns:

	
	scorefloat
	Mean accuracy of self.predict(X) w.r.t. y.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_score_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → NonMyopicEarlyClassifier[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the score method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to score.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in score.







	Returns:

	
	selfobject
	The updated object.


















Examples using tslearn.early_classification.NonMyopicEarlyClassifier
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tslearn.generators

The tslearn.generators module gathers synthetic time series dataset
generation routines.

Functions



	random_walk_blobs([n_ts_per_blob, sz, d, ...])

	Blob-based random walk time series generator.



	random_walks([n_ts, sz, d, mu, std, ...])

	Random walk time series generator.
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tslearn.generators.random_walk_blobs


	
tslearn.generators.random_walk_blobs(n_ts_per_blob=100, sz=256, d=1, n_blobs=2, noise_level=1.0, random_state=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/generators/generators.py#L57-L112]

	Blob-based random walk time series generator.

Generate n_ts_per_blobs * n_blobs time series of size sz and
dimensionality d.
Generated time series follow the model:


\[ts[t] = ts[t - 1] + a\]

where \(a\) is drawn from a normal distribution of mean mu and
standard deviation std.

Each blob contains time series derived from a same seed time series with
added white noise.


	Parameters:

	
	n_ts_per_blobint (default: 100)
	Number of time series in each blob



	szint (default: 256)
	Length of time series (number of time instants)



	dint (default: 1)
	Dimensionality of time series



	n_blobsint (default: 2)
	Number of blobs



	noise_levelfloat (default: 1.)
	Standard deviation of white noise added to time series in each blob



	random_stateinteger or numpy.RandomState or None (default: None)
	Generator used to draw the time series. If an integer is given, it
fixes the seed. Defaults to the global
numpy random number generator.







	Returns:

	
	numpy.ndarray
	A dataset of random walk time series



	numpy.ndarray
	Labels associated to random walk time series (blob id)









Examples

>>> X, y = random_walk_blobs(n_ts_per_blob=100, sz=256, d=5, n_blobs=3)
>>> X.shape
(300, 256, 5)
>>> y.shape
(300,)










Examples using tslearn.generators.random_walk_blobs
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tslearn.generators.random_walks


	
tslearn.generators.random_walks(n_ts=100, sz=256, d=1, mu=0.0, std=1.0, random_state=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/generators/generators.py#L7-L54]

	Random walk time series generator.

Generate n_ts time series of size sz and dimensionality d.
Generated time series follow the model:


\[ts[t] = ts[t - 1] + a\]

where \(a\) is drawn from a normal distribution of mean mu and standard
deviation std.


	Parameters:

	
	n_tsint (default: 100)
	Number of time series.



	szint (default: 256)
	Length of time series (number of time instants).



	dint (default: 1)
	Dimensionality of time series.



	mufloat (default: 0.)
	Mean of the normal distribution from which random walk steps are drawn.



	stdfloat (default: 1.)
	Standard deviation of the normal distribution from which random walk
steps are drawn.



	random_stateinteger or numpy.RandomState or None (default: None)
	Generator used to draw the time series. If an integer is given, it
fixes the seed. Defaults to the global
numpy random number generator.







	Returns:

	
	numpy.ndarray
	A dataset of random walk time series









Examples

>>> random_walks(n_ts=100, sz=256, d=5, mu=0., std=1.).shape
(100, 256, 5)










Examples using tslearn.generators.random_walks
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  LB_Keogh


[image: ]sDTW multi path matching

  sDTW multi path matching
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Longest Commom Subsequence with a custom distance metric

  Longest Commom Subsequence with a custom distance metric


[image: ]DTW computation with a custom distance metric

  DTW computation with a custom distance metric


[image: ]PAA and SAX features

  PAA and SAX features
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tslearn.matrix_profile

The tslearn.matrix_profile module gathers methods for the computation of
Matrix Profiles from time series.

User guide: See the Matrix Profile section for 
further details.

Classes



	MatrixProfile([subsequence_length, ...])

	Matrix Profile transformation.
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tslearn.matrix_profile.MatrixProfile


	
class tslearn.matrix_profile.MatrixProfile(subsequence_length=1, implementation='numpy', scale=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/matrix_profile/matrix_profile.py#L69-L253]

	Matrix Profile transformation.

Matrix Profile was originally presented in [1].


	Parameters:

	
	subsequence_lengthint (default: 1)
	Length of the subseries (also called window size) to be used for
subseries distance computations.



	implementationstr (default: “numpy”)
	Matrix profile implementation to use.
Defaults to “numpy” to use the pure numpy version.
All the available implementations are [“numpy”, “stump”, “gpu_stump”].

“stump” and “gpu_stump” are both implementations from the stumpy
python library, the latter requiring a GPU.
Stumpy is a library for efficiently computing the matrix profile which
is optimized for speed, performance and memory.
See [2] for the documentation.
“numpy” is the default pure numpy implementation and does not require
stumpy to be installed.



	scale: bool (default: True)
	Whether input data should be scaled for each feature of each time
series to have zero mean and unit variance.
Default for this parameter is set to True to match the standard
matrix profile setup.









References



[1]
C. M. Yeh, Y. Zhu, L. Ulanova, N.Begum et al.
Matrix Profile I: All Pairs Similarity Joins for Time Series: A
Unifying View that Includes Motifs, Discords and Shapelets.
ICDM 2016.




[2]
STUMPY documentation https://stumpy.readthedocs.io/en/latest/





Examples

>>> time_series = [0., 1., 3., 2., 9., 1., 14., 15., 1., 2., 2., 10., 7.]
>>> ds = [time_series]
>>> mp = MatrixProfile(subsequence_length=4, scale=False)
>>> mp.fit_transform(ds)[0, :, 0]  
array([ 6.85...,  1.41...,  6.16...,  7.93..., 11.40...,
       13.56..., 18.  ..., 13.96...,  1.41...,  6.16...])





Methods



	fit(X[, y])

	Fit a Matrix Profile representation.



	fit_transform(X[, y])

	Transform a dataset of time series into its Matrix Profile



	from_hdf5(path)

	Load model from a HDF5 file.



	from_json(path)

	Load model from a JSON file.



	from_pickle(path)

	Load model from a pickle file.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	set_output(*[, transform])

	Set output container.



	set_params(**params)

	Set the parameters of this estimator.



	to_hdf5(path)

	Save model to a HDF5 file.



	to_json(path)

	Save model to a JSON file.



	to_pickle(path)

	Save model to a pickle file.



	transform(X[, y])

	Transform a dataset of time series into its Matrix Profile







	
fit(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/matrix_profile/matrix_profile.py#L136-L151]

	Fit a Matrix Profile representation.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	MatrixProfile
	self














	
fit_transform(X, y=None, **fit_params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L233-L250]

	
	Transform a dataset of time series into its Matrix Profile
	representation.






	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	numpy.ndarray of shape (n_ts, output_size, 1)
	Matrix-Profile-Transformed dataset. ouput_size is equal to
sz - subsequence_length + 1














	
classmethod from_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L185-L211]

	Load model from a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L226-L259]

	Load model from a JSON file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L274-L290]

	Load model from a pickle file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
set_output(*, transform=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L230-L258]

	Set output container.

See Introducing the set_output API [https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py]
for an example on how to use the API.


	Parameters:

	
	transform{“default”, “pandas”}, default=None
	Configure output of transform and fit_transform.


	“default”: Default output format of a transformer


	“pandas”: DataFrame output


	None: Transform configuration is unchanged










	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
to_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L164-L183]

	Save model to a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full file path. File must not already exist.







	Raises:

	
	FileExistsError
	If a file with the same path already exists.














	
to_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L213-L224]

	Save model to a JSON file.


	Parameters:

	
	pathstr
	Full file path.














	
to_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L261-L272]

	Save model to a pickle file.


	Parameters:

	
	pathstr
	Full file path.














	
transform(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L212-L231]

	
	Transform a dataset of time series into its Matrix Profile
	representation.






	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	numpy.ndarray of shape (n_ts, output_size, 1)
	Matrix-Profile-Transformed dataset. ouput_size is equal to
sz - subsequence_length + 1


















Examples using tslearn.matrix_profile.MatrixProfile
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  Distance and Matrix Profiles
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tslearn.metrics

The tslearn.metrics module delivers time-series specific metrics to be 
used at the core of machine learning algorithms.

User guide: See the Dynamic Time Warping (DTW) section for 
further details.

Functions



	cdist_dtw(dataset1[, dataset2, ...])

	Compute cross-similarity matrix using Dynamic Time Warping (DTW) similarity measure.



	cdist_gak(dataset1[, dataset2, sigma, ...])

	Compute cross-similarity matrix using Global Alignment kernel (GAK).



	ctw(s1, s2[, max_iter, n_components, ...])

	Compute Canonical Time Warping (CTW) similarity measure between (possibly multidimensional) time series and return the similarity.



	ctw_path(s1, s2[, max_iter, n_components, ...])

	Compute Canonical Time Warping (CTW) similarity measure between (possibly multidimensional) time series and return the alignment path, the canonical correlation analysis (sklearn) object and the similarity.



	dtw(s1, s2[, global_constraint, ...])

	Compute Dynamic Time Warping (DTW) similarity measure between (possibly multidimensional) time series and return it.



	dtw_path(s1, s2[, global_constraint, ...])

	Compute Dynamic Time Warping (DTW) similarity measure between (possibly multidimensional) time series and return both the path and the similarity.



	dtw_path_from_metric(s1[, s2, metric, ...])

	Compute Dynamic Time Warping (DTW) similarity measure between (possibly multidimensional) time series using a distance metric defined by the user and return both the path and the similarity.



	dtw_limited_warping_length(s1, s2, max_length)

	Compute Dynamic Time Warping (DTW) similarity measure between (possibly multidimensional) time series under an upper bound constraint on the resulting path length and return the similarity cost.



	dtw_path_limited_warping_length(s1, s2, ...)

	Compute Dynamic Time Warping (DTW) similarity measure between (possibly multidimensional) time series under an upper bound constraint on the resulting path length and return the path as well as the similarity cost.



	subsequence_path(acc_cost_mat, idx_path_end)

	Compute the optimal path through an accumulated cost matrix given the endpoint of the sequence.



	subsequence_cost_matrix(subseq, longseq[, be])

	Compute the accumulated cost matrix score between a subsequence and a reference time series.



	dtw_subsequence_path(subseq, longseq[, be])

	Compute sub-sequence Dynamic Time Warping (DTW) similarity measure between a (possibly multidimensional) query and a long time series and return both the path and the similarity.



	lcss(s1, s2[, eps, global_constraint, ...])

	Compute the Longest Common Subsequence (LCSS) similarity measure between (possibly multidimensional) time series and return the similarity.



	lcss_path(s1, s2[, eps, global_constraint, ...])

	Compute the Longest Common Subsequence (LCSS) similarity measure between (possibly multidimensional) time series and return both the path and the similarity.



	lcss_path_from_metric(s1[, s2, eps, metric, ...])

	Compute the Longest Common Subsequence (LCSS) similarity measure between (possibly multidimensional) time series using a distance metric defined by the user and return both the path and the similarity.



	gak(s1, s2[, sigma, be])

	Compute Global Alignment Kernel (GAK) between (possibly multidimensional) time series and return it.



	soft_dtw(ts1, ts2[, gamma, be, ...])

	Compute Soft-DTW metric between two time series.



	soft_dtw_alignment(ts1, ts2[, gamma, be, ...])

	Compute Soft-DTW metric between two time series and return both the similarity measure and the alignment matrix.



	cdist_soft_dtw(dataset1[, dataset2, gamma, ...])

	Compute cross-similarity matrix using Soft-DTW metric.



	cdist_soft_dtw_normalized(dataset1[, ...])

	Compute cross-similarity matrix using a normalized version of the Soft-DTW metric.



	lb_envelope(ts[, radius, be])

	Compute time series envelope as required by LB_Keogh.



	lb_keogh(ts_query[, ts_candidate, radius, ...])

	Compute LB_Keogh.



	sigma_gak(dataset[, n_samples, random_state, be])

	Compute sigma value to be used for GAK.



	gamma_soft_dtw(dataset[, n_samples, ...])

	Compute gamma value to be used for GAK/Soft-DTW.



	SoftDTWLossPyTorch([gamma, normalize, dist_func])

	Soft-DTW loss function in PyTorch.
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tslearn.metrics.cdist_dtw


	
tslearn.metrics.cdist_dtw(dataset1, dataset2=None, global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None, n_jobs=None, verbose=0, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L1835-L1960]

	Compute cross-similarity matrix using Dynamic Time Warping (DTW)
similarity measure.

DTW is computed as the Euclidean distance between aligned time series,
i.e., if \(\pi\) is the alignment path:


\[DTW(X, Y) = \sqrt{\sum_{(i, j) \in \pi} \|X_{i} - Y_{j}\|^2}\]

Note that this formula is still valid for the multivariate case.

It is not required that time series share the same size, but they
must be the same dimension.
DTW was originally presented in [1] and is
discussed in more details in our dedicated user-guide page.


	Parameters:

	
	dataset1array-like, shape=(n_ts1, sz1, d) or (n_ts1, sz1) or (sz1,)
	A dataset of time series.
If shape is (n_ts1, sz1), the dataset is composed of univariate time series.
If shape is (sz1,), the dataset is composed of a unique univariate time series.



	dataset2None or array-like, shape=(n_ts2, sz2, d) or (n_ts2, sz2) or (sz2,) (default: None)
	Another dataset of time series. If None, self-similarity of
dataset1 is returned.
If shape is (n_ts2, sz2), the dataset is composed of univariate time series.
If shape is (sz2,), the dataset is composed of a unique univariate time series.



	global_constraint{“itakura”, “sakoe_chiba”} or None (default: None)
	Global constraint to restrict admissible paths for DTW.



	sakoe_chiba_radiusint or None (default: None)
	Radius to be used for Sakoe-Chiba band global constraint.
The Sakoe-Chiba radius corresponds to the parameter \(\delta\) mentioned in [1],
it controls how far in time we can go in order to match a given
point from one time series to a point in another time series.
If None and global_constraint is set to “sakoe_chiba”, a radius of
1 is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	itakura_max_slopefloat or None (default: None)
	Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope
of 2. is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	n_jobsint or None, optional (default=None)
	The number of jobs to run in parallel.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learns’
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.



	verboseint, optional (default=0)
	The verbosity level: if non zero, progress messages are printed.
Above 50, the output is sent to stdout.
The frequency of the messages increases with the verbosity level.
If it more than 10, all iterations are reported.
Glossary [https://joblib.readthedocs.io/en/latest/parallel.html#parallel-reference-documentation]
for more details.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	cdistarray-like, shape=(n_ts1, n_ts2)
	Cross-similarity matrix.










See also


	dtw
	Get DTW similarity score







References



[1]
(1,2)
H. Sakoe, S. Chiba, “Dynamic programming algorithm optimization for
spoken word recognition,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 26(1), pp. 43–49, 1978.





Examples

>>> cdist_dtw([[1, 2, 2, 3], [1., 2., 3., 4.]])
array([[0., 1.],
       [1., 0.]])
>>> cdist_dtw([[1, 2, 2, 3], [1., 2., 3., 4.]], [[1, 2, 3], [2, 3, 4, 5]])
array([[0.        , 2.44948974],
       [1.        , 1.41421356]])
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tslearn.metrics.cdist_gak


	
tslearn.metrics.cdist_gak(dataset1, dataset2=None, sigma=1.0, n_jobs=None, verbose=0, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/softdtw_variants.py#L250-L341]

	Compute cross-similarity matrix using Global Alignment kernel (GAK).

GAK was originally presented in [1].


	Parameters:

	
	dataset1array-like, shape=(n_ts1, sz1, d) or (n_ts1, sz1) or (sz1,)
	A dataset of time series.
If shape is (n_ts1, sz1), the dataset is composed of univariate time series.
If shape is (sz1,), the dataset is composed of a unique univariate time series.



	dataset2None or array-like, shape=(n_ts2, sz2, d) or (n_ts2, sz2) or (sz2,) (default: None)
	Another dataset of time series. 
If None, self-similarity of dataset1 is returned.
If shape is (n_ts2, sz2), the dataset is composed of univariate time series.
If shape is (sz2,), the dataset is composed of a unique univariate time series.



	sigmafloat (default 1.)
	Bandwidth of the internal gaussian kernel used for GAK



	n_jobsint or None, optional (default=None)
	The number of jobs to run in parallel.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learns’
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.



	verboseint, optional (default=0)
	The verbosity level: if non zero, progress messages are printed.
Above 50, the output is sent to stdout.
The frequency of the messages increases with the verbosity level.
If it more than 10, all iterations are reported.
Glossary [https://joblib.readthedocs.io/en/latest/parallel.html#parallel-reference-documentation]
for more details.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	array-like, shape=(n_ts1, n_ts2)
	Cross-similarity matrix.










See also


	gak
	Compute Global Alignment kernel







References



[1]

	Cuturi, “Fast global alignment kernels,” ICML 2011.








Examples

>>> cdist_gak([[1, 2, 2, 3], [1., 2., 3., 4.]], sigma=2.)
array([[1.        , 0.65629661],
       [0.65629661, 1.        ]])
>>> cdist_gak([[1, 2, 2], [1., 2., 3., 4.]],
...           [[1, 2, 2, 3], [1., 2., 3., 4.], [1, 2, 2, 3]],
...           sigma=2.)
array([[0.71059484, 0.29722877, 0.71059484],
       [0.65629661, 1.        , 0.65629661]])
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tslearn.metrics.ctw(s1, s2, max_iter=100, n_components=None, global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None, verbose=False, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/ctw.py#L199-L298]

	Compute Canonical Time Warping (CTW) similarity measure between
(possibly multidimensional) time series and return the similarity.

Canonical Time Warping is a method to align time series under rigid
registration of the feature space.
It should not be confused with Dynamic Time Warping (DTW), though CTW uses
DTW.

It is not required that both time series share the same size, nor the same
dimension (CTW will find a subspace that best aligns feature spaces).
CTW was originally presented in [1].


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,)
	A time series. If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,)
	Another time series. If shape is (sz2,), the time series is assumed to be univariate.



	max_iterint (default: 100)
	Number of iterations for the CTW algorithm. Each iteration



	n_componentsint (default: None)
	Number of components to be used for Canonical Correlation Analysis.
If None, the lower minimum number of features between seq1 and seq2 is
used.



	global_constraint{“itakura”, “sakoe_chiba”} or None (default: None)
	Global constraint to restrict admissible paths for DTW calls.



	sakoe_chiba_radiusint or None (default: None)
	Radius to be used for Sakoe-Chiba band global constraint.
If None and global_constraint is set to “sakoe_chiba”, a radius of
1 is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	itakura_max_slopefloat or None (default: None)
	Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope
of 2. is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	verbosebool (default: True)
	If True, scores are printed at each iteration of the algorithm.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	float
	Similarity score










See also


	ctw
	Get only the similarity score for CTW







References



[1]
F. Zhou and F. Torre, “Canonical time warping for alignment of
human behavior”. NIPS 2009.





Examples

>>> ctw([1, 2, 3], [1., 2., 2., 3.])
0.0
>>> ctw([1, 2, 3], [[1., 1.], [2., 2.], [2., 2.], [3., 3.]])
0.0
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tslearn.metrics.ctw_path


	
tslearn.metrics.ctw_path(s1, s2, max_iter=100, n_components=None, global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None, verbose=False, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/ctw.py#L45-L196]

	Compute Canonical Time Warping (CTW) similarity measure between
(possibly multidimensional) time series and return the alignment path, the
canonical correlation analysis (sklearn) object and the similarity.

Canonical Time Warping is a method to align time series under rigid
registration of the feature space.
It should not be confused with Dynamic Time Warping (DTW), though CTW uses
DTW.

It is not required that both time series share the same size, nor the same
dimension (CTW will find a subspace that best aligns feature spaces).
CTW was originally presented in [1].


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,)
	A time series. If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,)
	Another time series. If shape is (sz2,), the time series is assumed to be univariate.



	max_iterint (default: 100)
	Number of iterations for the CTW algorithm. Each iteration



	n_componentsint (default: None)
	Number of components to be used for Canonical Correlation Analysis.
If None, the lower minimum number of features between s1 and s2 is
used.



	global_constraint{“itakura”, “sakoe_chiba”} or None (default: None)
	Global constraint to restrict admissible paths for DTW calls.



	sakoe_chiba_radiusint or None (default: None)
	Radius to be used for Sakoe-Chiba band global constraint.
If None and global_constraint is set to “sakoe_chiba”, a radius of
1 is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	itakura_max_slopefloat or None (default: None)
	Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope
of 2. is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	verbosebool (default: True)
	If True, scores are printed at each iteration of the algorithm.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	list of integer pairs
	Matching path represented as a list of index pairs. In each pair, the
first index corresponds to s1 and the second one corresponds to s2



	sklearn.decomposition.CCA
	The Canonical Correlation Analysis object used to align time series
at convergence.



	float
	Similarity score










See also


	ctw
	Get only the similarity score for CTW







References



[1]
F. Zhou and F. Torre, “Canonical time warping for alignment of
human behavior”. NIPS 2009.





Examples

>>> path, cca, dist = ctw_path([1, 2, 3], [1., 2., 2., 3.])
>>> path
[(0, 0), (1, 1), (1, 2), (2, 3)]
>>> type(cca)  
<class 'sklearn.cross_decomposition...CCA'>
>>> dist
0.0
>>> path, cca, dist = ctw_path([1, 2, 3],
...                            [[1., 1.], [2., 2.], [2., 2.], [3., 3.]])
>>> dist
0.0










Examples using tslearn.metrics.ctw_path

[image: ]Canonical Time Warping

  Canonical Time Warping
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tslearn.metrics.dtw


	
tslearn.metrics.dtw(s1, s2, global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L668-L805]

	Compute Dynamic Time Warping (DTW) similarity measure between
(possibly multidimensional) time series and return it.

DTW is computed as the Euclidean distance between aligned time series,
i.e., if \(\pi\) is the optimal alignment path:


\[DTW(X, Y) = \sqrt{\sum_{(i, j) \in \pi} \|X_{i} - Y_{j}\|^2}\]

Note that this formula is still valid for the multivariate case.

It is not required that both time series share the same size, but they must
be the same dimension. DTW was originally presented in [1] and is
discussed in more details in our dedicated user-guide page.


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,)
	A time series. If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,)
	Another time series. If shape is (sz2,), the time series is assumed to be univariate.



	global_constraint{“itakura”, “sakoe_chiba”} or None (default: None)
	Global constraint to restrict admissible paths for DTW.



	sakoe_chiba_radiusint or None (default: None)
	Radius to be used for Sakoe-Chiba band global constraint.
The Sakoe-Chiba radius corresponds to the parameter \(\delta\) mentioned in [1],
it controls how far in time we can go in order to match a given
point from one time series to a point in another time series.
If None and global_constraint is set to “sakoe_chiba”, a radius of
1 is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	itakura_max_slopefloat or None (default: None)
	Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope
of 2. is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	float
	Similarity score










See also


	dtw_path
	Get both the matching path and the similarity score for DTW



	cdist_dtw
	Cross similarity matrix between time series datasets







References



[1]
(1,2)
H. Sakoe, S. Chiba, “Dynamic programming algorithm optimization for
spoken word recognition,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 26(1), pp. 43–49, 1978.





Examples

>>> dtw([1, 2, 3], [1., 2., 2., 3.])
0.0
>>> dtw([1, 2, 3], [1., 2., 2., 3., 4.])
1.0





The PyTorch backend can be used to compute gradients:

>>> import torch
>>> s1 = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> s2 = torch.tensor([[3.0], [4.0], [-3.0]])
>>> sim = dtw(s1, s2, be="pytorch")
>>> print(sim)
tensor(6.4807, grad_fn=<SqrtBackward0>)
>>> sim.backward()
>>> print(s1.grad)
tensor([[-0.3086],
        [-0.1543],
        [ 0.7715]])





>>> s1_2d = torch.tensor([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], requires_grad=True)
>>> s2_2d = torch.tensor([[3.0, 3.0], [4.0, 4.0], [-3.0, -3.0]])
>>> sim = dtw(s1_2d, s2_2d, be="pytorch")
>>> print(sim)
tensor(9.1652, grad_fn=<SqrtBackward0>)
>>> sim.backward()
>>> print(s1_2d.grad)
tensor([[-0.2182, -0.2182],
        [-0.1091, -0.1091],
        [ 0.5455,  0.5455]])
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tslearn.metrics.dtw_path


	
tslearn.metrics.dtw_path(s1, s2, global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L292-L410]

	Compute Dynamic Time Warping (DTW) similarity measure between
(possibly multidimensional) time series and return both the path and the
similarity.

DTW is computed as the Euclidean distance between aligned time series,
i.e., if \(\pi\) is the alignment path:


\[DTW(X, Y) = \sqrt{\sum_{(i, j) \in \pi} (X_{i} - Y_{j})^2}\]

It is not required that both time series share the same size, but they must
be the same dimension. DTW was originally presented in [1] and is
discussed in more details in our dedicated user-guide page.


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,)
	A time series. If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,)
	Another time series. If shape is (sz2,), the time series is assumed to be univariate.



	global_constraint{“itakura”, “sakoe_chiba”} or None (default: None)
	Global constraint to restrict admissible paths for DTW.



	sakoe_chiba_radiusint or None (default: None)
	Radius to be used for Sakoe-Chiba band global constraint.
The Sakoe-Chiba radius corresponds to the parameter \(\delta\) mentioned in [1],
it controls how far in time we can go in order to match a given
point from one time series to a point in another time series.
If None and global_constraint is set to “sakoe_chiba”, a radius of
1 is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	itakura_max_slopefloat or None (default: None)
	Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope
of 2. is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	list of integer pairs
	Matching path represented as a list of index pairs. In each pair, the
first index corresponds to s1 and the second one corresponds to s2.



	float
	Similarity score










See also


	dtw
	Get only the similarity score for DTW



	cdist_dtw
	Cross similarity matrix between time series datasets



	dtw_path_from_metric
	Compute a DTW using a user-defined distance metric







References



[1]
(1,2)
H. Sakoe, S. Chiba, “Dynamic programming algorithm optimization for
spoken word recognition,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 26(1), pp. 43–49, 1978.





Examples

>>> path, dist = dtw_path([1, 2, 3], [1., 2., 2., 3.])
>>> path
[(0, 0), (1, 1), (1, 2), (2, 3)]
>>> dist
0.0
>>> dtw_path([1, 2, 3], [1., 2., 2., 3., 4.])[1]
1.0










Examples using tslearn.metrics.dtw_path

[image: ]Longest Common Subsequence

  Longest Common Subsequence
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tslearn.metrics.dtw_path_from_metric


	
tslearn.metrics.dtw_path_from_metric(s1, s2=None, metric='euclidean', global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None, be=None, **kwds)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L483-L665]

	Compute Dynamic Time Warping (DTW) similarity measure between
(possibly multidimensional) time series using a distance metric defined by
the user and return both the path and the similarity.

Similarity is computed as the cumulative cost along the aligned time
series.

It is not required that both time series share the same size, but they must
be the same dimension. DTW was originally presented in [1].

Valid values for metric are the same as for scikit-learn
pairwise_distances [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html] function i.e. a string (e.g. “euclidean”,
“sqeuclidean”, “hamming”) or a function that is used to compute the
pairwise distances. See scikit [https://scikit-learn.org/stable/modules/metrics.html] and scipy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html] documentations for more
information about the available metrics.


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,) if metric!=”precomputed”, (sz1, sz2) otherwise
	A time series or an array of pairwise distances between samples.
If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,), optional (default: None)
	A second time series, only allowed if metric != “precomputed”.
If shape is (sz2,), the time series is assumed to be univariate.



	metricstring or callable (default: “euclidean”)
	Function used to compute the pairwise distances between each points of
s1 and s2.

If metric is “precomputed”, s1 is assumed to be a distance matrix.

If metric is an other string, it must be one of the options compatible
with sklearn.metrics.pairwise_distances.

Alternatively, if metric is a callable function, it is called on pairs
of rows of s1 and s2. The callable should take two 1 dimensional
arrays as input and return a value indicating the distance between
them.



	global_constraint{“itakura”, “sakoe_chiba”} or None (default: None)
	Global constraint to restrict admissible paths for DTW.



	sakoe_chiba_radiusint or None (default: None)
	Radius to be used for Sakoe-Chiba band global constraint.
The Sakoe-Chiba radius corresponds to the parameter \(\delta\) mentioned in [1],
it controls how far in time we can go in order to match a given
point from one time series to a point in another time series.
If None and global_constraint is set to “sakoe_chiba”, a radius of
1 is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	itakura_max_slopefloat or None (default: None)
	Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope
of 2. is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.



	**kwds
	Additional arguments to pass to sklearn pairwise_distances to compute
the pairwise distances.







	Returns:

	
	list of integer pairs
	Matching path represented as a list of index pairs. In each pair, the
first index corresponds to s1 and the second one corresponds to s2.



	float
	Similarity score (sum of metric along the wrapped time series).










See also


	dtw_path
	Get both the matching path and the similarity score for DTW







Notes

By using a squared euclidean distance metric as shown above, the output
path is the same as the one obtained by using dtw_path but the similarity
score is the sum of squared distances instead of the euclidean distance.

References



[1]
(1,2)
H. Sakoe, S. Chiba, “Dynamic programming algorithm optimization for
spoken word recognition,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 26(1), pp. 43–49, 1978.





Examples

Lets create 2 numpy arrays to wrap:

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> s1, s2 = rng.rand(5, 2), rng.rand(6, 2)





The wrapping can be done by passing a string indicating the metric to pass
to scikit-learn pairwise_distances:

>>> dtw_path_from_metric(s1, s2,
...                      metric="sqeuclidean")  
([(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5)], 1.117...)





Or by defining a custom distance function:

>>> sqeuclidean = lambda x, y: np.sum((x-y)**2)
>>> dtw_path_from_metric(s1, s2, metric=sqeuclidean)  
([(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5)], 1.117...)





Or by using a precomputed distance matrix as input:

>>> from sklearn.metrics.pairwise import pairwise_distances
>>> dist_matrix = pairwise_distances(s1, s2, metric="sqeuclidean")
>>> dtw_path_from_metric(dist_matrix,
...                      metric="precomputed")  
([(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5)], 1.117...)










Examples using tslearn.metrics.dtw_path_from_metric

[image: ]DTW computation with a custom distance metric

  DTW computation with a custom distance metric
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tslearn.metrics.dtw_limited_warping_length


	
tslearn.metrics.dtw_limited_warping_length(s1, s2, max_length, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L897-L977]

	Compute Dynamic Time Warping (DTW) similarity measure between
(possibly multidimensional) time series under an upper bound constraint on
the resulting path length and return the similarity cost.

DTW is computed as the Euclidean distance between aligned time series,
i.e., if \(\pi\) is the optimal alignment path:


\[DTW(X, Y) = \sqrt{\sum_{(i, j) \in \pi} \|X_{i} - Y_{j}\|^2}\]

Note that this formula is still valid for the multivariate case.

It is not required that both time series share the same size, but they must
be the same dimension. DTW was originally presented in [1].
This constrained-length variant was introduced in [2].
Both bariants are
discussed in more details in our dedicated user-guide page


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,)
	A time series. If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,)
	Another time series. If shape is (sz2,), the time series is assumed to be univariate.



	max_lengthint
	Maximum allowed warping path length.
If greater than len(s1) + len(s2), then it is equivalent to
unconstrained DTW.
If lower than max(len(s1), len(s2)), no path can be found and a
ValueError is raised.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	float
	Similarity score










See also


	dtw
	Get the similarity score for DTW



	dtw_path_limited_warping_length
	Get both the warping path and the similarity score for DTW with limited warping path length







References



[1]
H. Sakoe, S. Chiba, “Dynamic programming algorithm optimization for
spoken word recognition,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 26(1), pp. 43–49, 1978.




[2]
Z. Zhang, R. Tavenard, A. Bailly, X. Tang, P. Tang, T. Corpetti
Dynamic time warping under limited warping path length.
Information Sciences, vol. 393, pp. 91–107, 2017.





Examples

>>> dtw_limited_warping_length([1, 2, 3], [1., 2., 2., 3.], 5)
0.0
>>> dtw_limited_warping_length([1, 2, 3], [1., 2., 2., 3., 4.], 5)
1.0
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tslearn.metrics.dtw_path_limited_warping_length(s1, s2, max_length, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L1038-L1137]

	Compute Dynamic Time Warping (DTW) similarity measure between
(possibly multidimensional) time series under an upper bound constraint on
the resulting path length and return the path as well as the similarity
cost.

DTW is computed as the Euclidean distance between aligned time series,
i.e., if \(\pi\) is the optimal alignment path:


\[DTW(X, Y) = \sqrt{\sum_{(i, j) \in \pi} \|X_{i} - Y_{j}\|^2}\]

Note that this formula is still valid for the multivariate case.

It is not required that both time series share the same size, but they must
be the same dimension. DTW was originally presented in [1].
This constrained-length variant was introduced in [2].
Both variants are
discussed in more details in our dedicated user-guide page


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,)
	A time series. If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,)
	Another time series. If shape is (sz2,), the time series is assumed to be univariate.



	max_lengthint
	Maximum allowed warping path length.
If greater than len(s1) + len(s2), then it is equivalent to
unconstrained DTW.
If lower than max(len(s1), len(s2)), no path can be found and a
ValueError is raised.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	list of integer pairs
	Optimal path



	float
	Similarity score










See also


	dtw_limited_warping_length
	Get the similarity score for DTW with limited warping path length



	dtw_path
	Get both the matching path and the similarity score for DTW







References



[1]
H. Sakoe, S. Chiba, “Dynamic programming algorithm optimization for
spoken word recognition,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 26(1), pp. 43–49, 1978.




[2]
Z. Zhang, R. Tavenard, A. Bailly, X. Tang, P. Tang, T. Corpetti
Dynamic time warping under limited warping path length.
Information Sciences, vol. 393, pp. 91–107, 2017.





Examples

>>> path, cost = dtw_path_limited_warping_length([1, 2, 3],
...                                              [1., 2., 2., 3.], 5)
>>> cost
0.0
>>> path
[(0, 0), (1, 1), (1, 2), (2, 3)]
>>> path, cost = dtw_path_limited_warping_length([1, 2, 3],
...                                              [1., 2., 2., 3., 4.], 5)
>>> cost
1.0
>>> path
[(0, 0), (1, 1), (1, 2), (2, 3), (2, 4)]
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tslearn.metrics.subsequence_path


	
tslearn.metrics.subsequence_path(acc_cost_mat, idx_path_end, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L1344-L1391]

	Compute the optimal path through an accumulated cost matrix given the
endpoint of the sequence.


	Parameters:

	
	acc_cost_mat: array-like, shape=(sz1, sz2)
	Accumulated cost matrix comparing subsequence from a longer sequence.



	idx_path_end: int
	The end position of the matched subsequence in the longer sequence.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	path: list of tuples of integer pairs
	Matching path represented as a list of index pairs. In each pair, the
first index corresponds to subseq and the second one corresponds to
longseq. The startpoint of the Path is \(P_0 = (0, ?)\) and it
ends at \(P_L = (len(subseq)-1, idx\_path\_end)\)










See also


	dtw_subsequence_path
	Get the similarity score for DTW



	subsequence_cost_matrix
	Calculate the required cost matrix







Examples

>>> acc_cost_mat = numpy.array([[1., 0., 0., 1., 4.],
...                             [5., 1., 1., 0., 1.]])
>>> # calculate the globally optimal path
>>> optimal_end_point = numpy.argmin(acc_cost_mat[-1, :])
>>> path = subsequence_path(acc_cost_mat, optimal_end_point)
>>> path
[(0, 2), (1, 3)]










Examples using tslearn.metrics.subsequence_path
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tslearn.metrics.subsequence_cost_matrix


	
tslearn.metrics.subsequence_cost_matrix(subseq, longseq, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L1211-L1241]

	Compute the accumulated cost matrix score between a subsequence and
a reference time series.


	Parameters:

	
	subseqarray-like, shape=(sz1, d) or (sz1,)
	Subsequence time series. If shape is (sz1,), the time series is assumed to be univariate.



	longseqarray-like, shape=(sz2, d) or (sz2,)
	Reference time series. If shape is (sz2,), the time series is assumed to be univariate.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	matarray-like, shape=(sz1, sz2)
	Accumulated cost matrix.














Examples using tslearn.metrics.subsequence_cost_matrix
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tslearn.metrics.dtw_subsequence_path


	
tslearn.metrics.dtw_subsequence_path(subseq, longseq, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L1394-L1460]

	Compute sub-sequence Dynamic Time Warping (DTW) similarity measure
between a (possibly multidimensional) query and a long time series and
return both the path and the similarity.

DTW is computed as the Euclidean distance between aligned time series,
i.e., if \(\pi\) is the alignment path:


\[DTW(X, Y) = \sqrt{\sum_{(i, j) \in \pi} \|X_{i} - Y_{j}\|^2}\]

Compared to traditional DTW, here, border constraints on admissible paths
\(\pi\) are relaxed such that \(\pi_0 = (0, ?)\) and
\(\pi_L = (N-1, ?)\) where \(L\) is the length of the considered
path and \(N\) is the length of the subsequence time series.

It is not required that both time series share the same size, but they must
be the same dimension. This implementation finds the best matching starting
and ending positions for subseq inside longseq.


	Parameters:

	
	subseqarray-like, shape=(sz1, d) or (sz1,)
	A query time series.
If shape is (sz1,), the time series is assumed to be univariate.



	longseqarray-like, shape=(sz2, d) or (sz2,)
	A reference (supposed to be longer than subseq) time series.
If shape is (sz2,), the time series is assumed to be univariate.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	list of integer pairs
	Matching path represented as a list of index pairs. In each pair, the
first index corresponds to subseq and the second one corresponds to
longseq.



	float
	Similarity score










See also


	dtw
	Get the similarity score for DTW



	subsequence_cost_matrix
	Calculate the required cost matrix



	subsequence_path
	Calculate a matching path manually







Examples

>>> path, dist = dtw_subsequence_path([2., 3.], [1., 2., 2., 3., 4.])
>>> path
[(0, 2), (1, 3)]
>>> dist
0.0













            

          

      

      

    

  

  
    
    

    tslearn.metrics.lcss
    

    

    

    

    

    
 
  

    
      
          
            
  
tslearn.metrics.lcss


	
tslearn.metrics.lcss(s1, s2, eps=1.0, global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L2341-L2457]

	Compute the Longest Common Subsequence (LCSS) similarity measure
between (possibly multidimensional) time series and return the
similarity.

LCSS is computed by matching indexes that are met up until the eps
threshold, so it leaves some points unmatched and focuses on the
similar parts of two sequences. The matching can occur even if the
time indexes are different. One can set additional constraints to the
set of acceptable paths: the Sakoe-Chiba band which is parametrized by a
radius or the Itakura parallelogram which is parametrized by a maximum slope.
Both these constraints consists in forcing paths to lie close
to the diagonal. To retrieve a meaningful similarity value from the
length of the longest common subsequence, the percentage of that value
regarding the length of the shortest time series is returned.

According to this definition, the values returned by LCSS range from
0 to 1, the highest value taken when two time series fully match,
and vice-versa. It is not required that both time series share the
same size, but they must be the same dimension. LCSS was originally
presented in [1] and is discussed in more details in our
dedicated user-guide page.


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,)
	A time series. If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,)
	Another time series. If shape is (sz2,), the time series is assumed to be univariate.



	epsfloat (default: 1.)
	Maximum matching distance threshold.



	global_constraint{“itakura”, “sakoe_chiba”} or None (default: None)
	Global constraint to restrict admissible paths for LCSS.



	sakoe_chiba_radiusint or None (default: None)
	Radius to be used for Sakoe-Chiba band global constraint.
The Sakoe-Chiba radius corresponds to the parameter \(\delta\) mentioned in [1],
it controls how far in time we can go in order to match a given
point from one time series to a point in another time series.
If None and global_constraint is set to “sakoe_chiba”, a radius of
1 is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	itakura_max_slopefloat or None (default: None)
	Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope
of 2. is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	float
	Similarity score










See also


	lcss_path
	Get both the matching path and the similarity score for LCSS







References



[1]
(1,2)
M. Vlachos, D. Gunopoulos, and G. Kollios. 2002. “Discovering
Similar Multidimensional Trajectories”, In Proceedings of the
18th International Conference on Data Engineering (ICDE ‘02).
IEEE Computer Society, USA, 673.





Examples

>>> lcss([1, 2, 3], [1., 2., 2., 3.])
1.0
>>> lcss([1, 2, 3], [1., 2., 2., 4., 7.])
1.0
>>> lcss([1, 2, 3], [1., 2., 2., 2., 3.], eps=0)
1.0
>>> lcss([1, 2, 3], [-2., 5., 7.], eps=3)
0.6666666666666666
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tslearn.metrics.lcss_path(s1, s2, eps=1, global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L2655-L2785]

	Compute the Longest Common Subsequence (LCSS) similarity measure
between (possibly multidimensional) time series and return both the
path and the similarity.

LCSS is computed by matching indexes that are met up until the eps
threshold, so it leaves some points unmatched and focuses on the
similar parts of two sequences. The matching can occur even if the
time indexes are different. One can set additional constraints to
the set of acceptable paths: the Sakoe-Chiba band which is parametrized
by a radius or the Itakura parallelogram which is parametrized by a
maximum slope. Both these constraints consists in forcing paths to lie
close to the diagonal.

To retrieve a meaningful similarity value from the length of the
longest common subsequence, the percentage of that value regarding
the length of the shortest time series is returned.

According to this definition, the values returned by LCSS range from
0 to 1, the highest value taken when two time series fully match,
and vice-versa. It is not required that both time series share the
same size, but they must be the same dimension. LCSS was originally
presented in [1] and is discussed in more details in our
dedicated user-guide page.


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,)
	A time series. If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,)
	Another time series. If shape is (sz2,), the time series is assumed to be univariate.



	epsfloat (default: 1.)
	Maximum matching distance threshold.



	global_constraint{“itakura”, “sakoe_chiba”} or None (default: None)
	Global constraint to restrict admissible paths for LCSS.



	sakoe_chiba_radiusint or None (default: None)
	Radius to be used for Sakoe-Chiba band global constraint.
The Sakoe-Chiba radius corresponds to the parameter \(\delta\) mentioned in [1],
it controls how far in time we can go in order to match a given
point from one time series to a point in another time series.
If None and global_constraint is set to “sakoe_chiba”, a radius of
1 is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	itakura_max_slopefloat or None (default: None)
	Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope
of 2. is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	list of integer pairs
	Matching path represented as a list of index pairs. In each pair, the
first index corresponds to s1 and the second one corresponds to s2



	float
	Similarity score










See also


	lcss
	Get only the similarity score for LCSS



	lcss_path_from_metric
	Compute LCSS using a user-defined distance metric







References



[1]
(1,2)
M. Vlachos, D. Gunopoulos, and G. Kollios. 2002. “Discovering
Similar Multidimensional Trajectories”, In Proceedings of the
18th International Conference on Data Engineering (ICDE ‘02).
IEEE Computer Society, USA, 673.





Examples

>>> path, sim = lcss_path([1., 2., 3.], [1., 2., 2., 3.])
>>> path
[(0, 1), (1, 2), (2, 3)]
>>> sim
1.0
>>> lcss_path([1., 2., 3.], [1., 2., 2., 4.])[1]
1.0










Examples using tslearn.metrics.lcss_path
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tslearn.metrics.lcss_path_from_metric


	
tslearn.metrics.lcss_path_from_metric(s1, s2=None, eps=1, metric='euclidean', global_constraint=None, sakoe_chiba_radius=None, itakura_max_slope=None, be=None, **kwds)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L2866-L3055]

	Compute the Longest Common Subsequence (LCSS) similarity measure between
(possibly multidimensional) time series using a distance metric defined by
the user and return both the path and the similarity.

Having the length of the longest commom subsequence between two time series,
the similarity is computed as the percentage of that value regarding the
length of the shortest time series.

It is not required that both time series share the same size, but they must
be the same dimension. LCSS was originally presented in [1].

Valid values for metric are the same as for scikit-learn
pairwise_distances [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html] function i.e. a string (e.g. “euclidean”,
“sqeuclidean”, “hamming”) or a function that is used to compute the
pairwise distances. See scikit [https://scikit-learn.org/stable/modules/metrics.html] and scipy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html] documentations for more
information about the available metrics.


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,) if metric!=”precomputed”, (sz1, sz2) otherwise
	A time series or an array of pairwise distances between samples.
If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,), optional (default: None)
	A second time series, only allowed if metric != “precomputed”.
If shape is (sz2,), the time series is assumed to be univariate.



	epsfloat (default: 1.)
	Maximum matching distance threshold.



	metricstring or callable (default: “euclidean”)
	Function used to compute the pairwise distances between each points of
s1 and s2.
If metric is “precomputed”, s1 is assumed to be a distance matrix.
If metric is an other string, it must be one of the options compatible
with sklearn.metrics.pairwise_distances.
Alternatively, if metric is a callable function, it is called on pairs
of rows of s1 and s2. The callable should take two 1 dimensional
arrays as input and return a value indicating the distance between
them.



	global_constraint{“itakura”, “sakoe_chiba”} or None (default: None)
	Global constraint to restrict admissible paths for LCSS.



	sakoe_chiba_radiusint or None (default: None)
	Radius to be used for Sakoe-Chiba band global constraint.
The Sakoe-Chiba radius corresponds to the parameter \(\delta\) mentioned in [1],
it controls how far in time we can go in order to match a given
point from one time series to a point in another time series.
If None and global_constraint is set to “sakoe_chiba”, a radius of
1 is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	itakura_max_slopefloat or None (default: None)
	Maximum slope for the Itakura parallelogram constraint.
If None and global_constraint is set to “itakura”, a maximum slope
of 2. is used.
If both sakoe_chiba_radius and itakura_max_slope are set,
global_constraint is used to infer which constraint to use among the
two. In this case, if global_constraint corresponds to no global
constraint, a RuntimeWarning is raised and no global constraint is
used.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.



	**kwds
	Additional arguments to pass to sklearn pairwise_distances to compute
the pairwise distances.







	Returns:

	
	list of integer pairs
	Matching path represented as a list of index pairs. In each pair, the
first index corresponds to s1 and the second one corresponds to s2.



	float
	Similarity score.










See also


	lcss
	Get only the similarity score for LCSS



	lcss_path
	Get both the matching path and the similarity score for LCSS







Notes

By using a squared euclidean distance metric as shown above, the output
path and similarity is the same as the one obtained by using lcss_path
(which uses the euclidean distance) simply because with the sum of squared
distances the matching threshold is still not reached.
Also, contrary to Dynamic Time Warping and variants, an LCSS path does not need to be contiguous.

References



[1]
(1,2)
M. Vlachos, D. Gunopoulos, and G. Kollios. 2002. “Discovering
Similar Multidimensional Trajectories”, In Proceedings of the
18th International Conference on Data Engineering (ICDE ‘02).
IEEE Computer Society, USA, 673.





Examples

Lets create 2 numpy arrays to wrap:

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> s1, s2 = rng.rand(5, 2), rng.rand(6, 2)





The wrapping can be done by passing a string indicating the metric to pass
to scikit-learn pairwise_distances:

>>> lcss_path_from_metric(s1, s2,
...                      metric="sqeuclidean")  
([(0, 1), (1, 2), (2, 3), (3, 4), (4, 5)], 1.0)





Or by defining a custom distance function:

>>> sqeuclidean = lambda x, y: np.sum((x-y)**2)
>>> lcss_path_from_metric(s1, s2, metric=sqeuclidean)  
([(0, 1), (1, 2), (2, 3), (3, 4), (4, 5)], 1.0)





Or by using a precomputed distance matrix as input:

>>> from sklearn.metrics.pairwise import pairwise_distances
>>> dist_matrix = pairwise_distances(s1, s2, metric="sqeuclidean")
>>> lcss_path_from_metric(dist_matrix,
...                      metric="precomputed")  
([(0, 1), (1, 2), (2, 3), (3, 4), (4, 5)], 1.0)










Examples using tslearn.metrics.lcss_path_from_metric
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tslearn.metrics.gak


	
tslearn.metrics.gak(s1, s2, sigma=1.0, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/softdtw_variants.py#L192-L247]

	Compute Global Alignment Kernel (GAK) between (possibly
multidimensional) time series and return it.

It is not required that both time series share the same size, but they must
be the same dimension. GAK was
originally presented in [1].
This is a normalized version that ensures that \(k(x,x)=1\) for all
\(x\) and \(k(x,y) \in [0, 1]\) for all \(x, y\).


	Parameters:

	
	s1array-like, shape=(sz1, d) or (sz1,)
	A time series.
If shape is (sz1,), the time series is assumed to be univariate.



	s2array-like, shape=(sz2, d) or (sz2,)
	Another time series.
If shape is (sz2,), the time series is assumed to be univariate.



	sigmafloat (default 1.)
	Bandwidth of the internal gaussian kernel used for GAK.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	float
	Kernel value










See also


	cdist_gak
	Compute cross-similarity matrix using Global Alignment kernel







References



[1]

	Cuturi, “Fast global alignment kernels,” ICML 2011.








Examples

>>> gak([1, 2, 3], [1., 2., 2., 3.], sigma=2.)  
0.839...
>>> gak([1, 2, 3], [1., 2., 2., 3., 4.])  
0.273...
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tslearn.metrics.soft_dtw


	
tslearn.metrics.soft_dtw(ts1, ts2, gamma=1.0, be=None, compute_with_backend=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/softdtw_variants.py#L464-L568]

	Compute Soft-DTW metric between two time series.

Soft-DTW was originally presented in [1] and is
discussed in more details in our
user-guide page on DTW and its variants.

Soft-DTW is computed as:


\[\text{soft-DTW}_{\gamma}(X, Y) =
    \min_{\pi}{}^\gamma \sum_{(i, j) \in \pi} \|X_i, Y_j\|^2\]

where \(\min^\gamma\) is the soft-min operator of parameter
\(\gamma\).

In the limit case \(\gamma = 0\), \(\min^\gamma\) reduces to a
hard-min operator and soft-DTW is defined as the square of the DTW
similarity measure.


	Parameters:

	
	ts1array-like, shape=(sz1, d) or (sz1,)
	A time series.
If shape is (sz1,), the time series is assumed to be univariate.



	ts2array-like, shape=(sz2, d) or (sz2,)
	Another time series.
If shape is (sz2,), the time series is assumed to be univariate.



	gammafloat (default 1.)
	Gamma parameter for Soft-DTW.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.



	compute_with_backendbool, default=False
	This parameter has no influence when the NumPy backend is used.
When a backend different from NumPy is used (cf parameter be):
If True, the computation is done with the corresponding backend.
If False, a conversion to the NumPy backend can be used to accelerate the computation.







	Returns:

	
	float
	Similarity










See also


	cdist_soft_dtw
	Cross similarity matrix between time series datasets







References



[1]
M. Cuturi, M. Blondel “Soft-DTW: a Differentiable Loss Function for
Time-Series,” ICML 2017.





Examples

>>> soft_dtw([1, 2, 2, 3],
...          [1., 2., 3., 4.],
...          gamma=1.)  
-0.89...
>>> soft_dtw([1, 2, 3, 3],
...          [1., 2., 2.1, 3.2],
...          gamma=0.01)  
0.089...





The PyTorch backend can be used to compute gradients:

>>> import torch
>>> ts1 = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> ts2 = torch.tensor([[3.0], [4.0], [-3.0]])
>>> sim = soft_dtw(ts1, ts2, gamma=1.0, be="pytorch", compute_with_backend=True)
>>> print(sim)
tensor(41.1876, dtype=torch.float64, grad_fn=<SelectBackward0>)
>>> sim.backward()
>>> print(ts1.grad)
tensor([[-4.0001],
        [-2.2852],
        [10.1643]])





>>> ts1_2d = torch.tensor([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], requires_grad=True)
>>> ts2_2d = torch.tensor([[3.0, 3.0], [4.0, 4.0], [-3.0, -3.0]])
>>> sim = soft_dtw(ts1_2d, ts2_2d, gamma=1.0, be="pytorch", compute_with_backend=True)
>>> print(sim)
tensor(83.2951, dtype=torch.float64, grad_fn=<SelectBackward0>)
>>> sim.backward()
>>> print(ts1_2d.grad)
tensor([[-4.0000, -4.0000],
        [-2.0261, -2.0261],
        [10.0206, 10.0206]])
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tslearn.metrics.soft_dtw_alignment


	
tslearn.metrics.soft_dtw_alignment(ts1, ts2, gamma=1.0, be=None, compute_with_backend=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/softdtw_variants.py#L571-L688]

	Compute Soft-DTW metric between two time series and return both the
similarity measure and the alignment matrix.

Soft-DTW was originally presented in [1] and is
discussed in more details in our
user-guide page on DTW and its variants.

Soft-DTW is computed as:


\[\text{soft-DTW}_{\gamma}(X, Y) =
    \min_{\pi}{}^\gamma \sum_{(i, j) \in \pi} \|X_i, Y_j\|^2\]

where \(\min^\gamma\) is the soft-min operator of parameter
\(\gamma\).

In the limit case \(\gamma = 0\), \(\min^\gamma\) reduces to a
hard-min operator and soft-DTW is defined as the square of the DTW
similarity measure.


	Parameters:

	
	ts1array-like, shape=(sz1, d) or (sz1,)
	A time series.
If shape is (sz1,), the time series is assumed to be univariate.



	ts2array-like, shape=(sz2, d) or (sz2,)
	Another time series.
If shape is (sz2,), the time series is assumed to be univariate.



	gammafloat (default 1.)
	Gamma parameter for Soft-DTW.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.



	compute_with_backendbool, default=False
	This parameter has no influence when the NumPy backend is used.
When a backend different from NumPy is used (cf parameter be):
If True, the computation is done with the corresponding backend.
If False, a conversion to the NumPy backend can be used to accelerate the computation.







	Returns:

	
	array-like, shape=(sz1, sz2)
	Soft-alignment matrix



	float
	Similarity










See also


	soft_dtw
	Returns soft-DTW score alone







References



[1]
M. Cuturi, M. Blondel “Soft-DTW: a Differentiable Loss Function for
Time-Series,” ICML 2017.





Examples

>>> a, dist = soft_dtw_alignment([1, 2, 2, 3],
...                              [1., 2., 3., 4.],
...                              gamma=1.)  
>>> dist
-0.89...
>>> a  
array([[1.00...e+00, 1.88...e-01, 2.83...e-04, 4.19...e-11],
       [3.40...e-01, 8.17...e-01, 8.87...e-02, 3.94...e-05],
       [5.05...e-02, 7.09...e-01, 5.30...e-01, 6.98...e-03],
       [1.37...e-04, 1.31...e-01, 7.30...e-01, 1.00...e+00]])





The PyTorch backend can be used to compute gradients:

>>> import torch
>>> ts1 = torch.tensor([[1.0], [2.0], [3.0]], requires_grad=True)
>>> ts2 = torch.tensor([[3.0], [4.0], [-3.0]])
>>> path, sim = soft_dtw_alignment(ts1, ts2, gamma=1.0, be="pytorch", compute_with_backend=True)
>>> print(sim)
tensor(41.1876, dtype=torch.float64, grad_fn=<AsStridedBackward0>)
>>> sim.backward()
>>> print(ts1.grad)
tensor([[-4.0001],
        [-2.2852],
        [10.1643]])





>>> ts1_2d = torch.tensor([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], requires_grad=True)
>>> ts2_2d = torch.tensor([[3.0, 3.0], [4.0, 4.0], [-3.0, -3.0]])
>>> path, sim = soft_dtw_alignment(ts1_2d, ts2_2d, gamma=1.0, be="pytorch", compute_with_backend=True)
>>> print(sim)
tensor(83.2951, dtype=torch.float64, grad_fn=<AsStridedBackward0>)
>>> sim.backward()
>>> print(ts1_2d.grad)
tensor([[-4.0000, -4.0000],
        [-2.0261, -2.0261],
        [10.0206, 10.0206]])










Examples using tslearn.metrics.soft_dtw_alignment

[image: ]Soft Dynamic Time Warping

  Soft Dynamic Time Warping
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tslearn.metrics.cdist_soft_dtw


	
tslearn.metrics.cdist_soft_dtw(dataset1, dataset2=None, gamma=1.0, be=None, compute_with_backend=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/softdtw_variants.py#L691-L816]

	Compute cross-similarity matrix using Soft-DTW metric.

Soft-DTW was originally presented in [1] and is
discussed in more details in our
user-guide page on DTW and its variants.

Soft-DTW is computed as:


\[\text{soft-DTW}_{\gamma}(X, Y) =
    \min_{\pi}{}^\gamma \sum_{(i, j) \in \pi} \|X_i, Y_j\|^2\]

where \(\min^\gamma\) is the soft-min operator of parameter
\(\gamma\).

In the limit case \(\gamma = 0\), \(\min^\gamma\) reduces to a
hard-min operator and soft-DTW is defined as the square of the DTW
similarity measure.


	Parameters:

	
	dataset1array-like, shape=(n_ts1, sz1, d) or (n_ts1, sz1) or (sz1,)
	A dataset of time series.
If shape is (n_ts1, sz1), the dataset is composed of univariate time series.
If shape is (sz1,), the dataset is composed of a unique univariate time series.



	dataset2None or array-like, shape=(n_ts2, sz2, d) or (n_ts2, sz2) or (sz2,) (default: None)
	Another dataset of time series. If None, self-similarity of
dataset1 is returned.
If shape is (n_ts2, sz2), the dataset is composed of univariate time series.
If shape is (sz2,), the dataset is composed of a unique univariate time series.



	gammafloat (default 1.)
	Gamma parameter for Soft-DTW.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.



	compute_with_backendbool, default=False
	This parameter has no influence when the NumPy backend is used.
When a backend different from NumPy is used (cf parameter be):
If True, the computation is done with the corresponding backend.
If False, a conversion to the NumPy backend can be used to accelerate the computation.







	Returns:

	
	array-like, shape=(n_ts1, n_ts2)
	Cross-similarity matrix.










See also


	soft_dtw
	Compute Soft-DTW



	cdist_soft_dtw_normalized
	Cross similarity matrix between time series datasets using a normalized version of Soft-DTW







References



[1]
M. Cuturi, M. Blondel “Soft-DTW: a Differentiable Loss Function for
Time-Series,” ICML 2017.





Examples

>>> cdist_soft_dtw([[1, 2, 2, 3], [1., 2., 3., 4.]], gamma=.01)
array([[-0.01098612,  1.        ],
       [ 1.        ,  0.        ]])
>>> cdist_soft_dtw([[1, 2, 2, 3], [1., 2., 3., 4.]],
...                [[1, 2, 2, 3], [1., 2., 3., 4.]], gamma=.01)
array([[-0.01098612,  1.        ],
       [ 1.        ,  0.        ]])





The PyTorch backend can be used to compute gradients:

>>> import torch
>>> dataset1 = torch.tensor([[[1.0], [2.0], [3.0]], [[1.0], [2.0], [3.0]]], requires_grad=True)
>>> dataset2 = torch.tensor([[[3.0], [4.0], [-3.0]], [[3.0], [4.0], [-3.0]]])
>>> sim_mat = cdist_soft_dtw(dataset1, dataset2, gamma=1.0, be="pytorch", compute_with_backend=True)
>>> print(sim_mat)
tensor([[41.1876, 41.1876],
        [41.1876, 41.1876]], grad_fn=<CopySlices>)
>>> sim = sim_mat[0, 0]
>>> sim.backward()
>>> print(dataset1.grad)
tensor([[[-4.0001],
         [-2.2852],
         [10.1643]],

        [[ 0.0000],
         [ 0.0000],
         [ 0.0000]]])
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tslearn.metrics.cdist_soft_dtw_normalized


	
tslearn.metrics.cdist_soft_dtw_normalized(dataset1, dataset2=None, gamma=1.0, be=None, compute_with_backend=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/softdtw_variants.py#L819-L951]

	Compute cross-similarity matrix using a normalized version of the
Soft-DTW metric.

Soft-DTW was originally presented in [1] and is
discussed in more details in our
user-guide page on DTW and its variants.

Soft-DTW is computed as:


\[\text{soft-DTW}_{\gamma}(X, Y) =
    \min_{\pi}{}^\gamma \sum_{(i, j) \in \pi} \|X_i, Y_j\|^2\]

where \(\min^\gamma\) is the soft-min operator of parameter
\(\gamma\).

In the limit case \(\gamma = 0\), \(\min^\gamma\) reduces to a
hard-min operator and soft-DTW is defined as the square of the DTW
similarity measure.

This normalized version is defined as:


\[\text{norm-soft-DTW}_{\gamma}(X, Y) =
    \text{soft-DTW}_{\gamma}(X, Y) -
    \frac{1}{2} \left(\text{soft-DTW}_{\gamma}(X, X) +
        \text{soft-DTW}_{\gamma}(Y, Y)\right)\]

and ensures that all returned values are positive and that
\(\text{norm-soft-DTW}_{\gamma}(X, X) = 0\).


	Parameters:

	
	dataset1array-like, shape=(n_ts1, sz1, d) or (n_ts1, sz1) or (sz1,)
	A dataset of time series.
If shape is (n_ts1, sz1), the dataset is composed of univariate time series.
If shape is (sz1,), the dataset is composed of a unique univariate time series.



	dataset2None or array-like, shape=(n_ts2, sz2, d) or (n_ts2, sz2) or (sz2,) (default: None)
	Another dataset of time series. If None, self-similarity of
dataset1 is returned.
If shape is (n_ts2, sz2), the dataset is composed of univariate time series.
If shape is (sz2,), the dataset is composed of a unique univariate time series.



	gammafloat (default 1.)
	Gamma parameter for Soft-DTW.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.



	compute_with_backendbool, default=False
	This parameter has no influence when the NumPy backend is used.
When a backend different from NumPy is used (cf parameter be):
If True, the computation is done with the corresponding backend.
If False, a conversion to the NumPy backend can be used to accelerate the computation.







	Returns:

	
	array-like, shape=(n_ts1, n_ts2)
	Cross-similarity matrix.










See also


	soft_dtw
	Compute Soft-DTW



	cdist_soft_dtw
	Cross similarity matrix between time series datasets using the unnormalized version of Soft-DTW







References



[1]
M. Cuturi, M. Blondel “Soft-DTW: a Differentiable Loss Function for
Time-Series,” ICML 2017.





Examples

>>> time_series = np.random.randn(10, 15, 1)
>>> np.alltrue(cdist_soft_dtw_normalized(time_series) >= 0.)
True
>>> time_series2 = np.random.randn(4, 15, 1)
>>> np.alltrue(cdist_soft_dtw_normalized(time_series, time_series2) >= 0.)
True





The PyTorch backend can be used to compute gradients:

>>> import torch
>>> dataset1 = torch.tensor([[[1.0], [2.0], [3.0]], [[1.0], [2.0], [3.0]]], requires_grad=True)
>>> dataset2 = torch.tensor([[[3.0], [4.0], [-3.0]], [[3.0], [4.0], [-3.0]]])
>>> sim_mat = cdist_soft_dtw_normalized(dataset1, dataset2, gamma=1.0, be="pytorch", compute_with_backend=True)
>>> print(sim_mat)
tensor([[42.0586, 42.0586],
        [42.0586, 42.0586]], grad_fn=<AddBackward0>)
>>> sim = sim_mat[0, 0]
>>> sim.backward()
>>> print(dataset1.grad)
tensor([[[-3.5249],
         [-2.2852],
         [ 9.6891]],

        [[ 0.0000],
         [ 0.0000],
         [ 0.0000]]])
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tslearn.metrics.lb_envelope


	
tslearn.metrics.lb_envelope(ts, radius=1, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L2125-L2185]

	Compute time series envelope as required by LB_Keogh.

LB_Keogh was originally presented in [1].


	Parameters:

	
	tsarray-like, shape=(sz, d) or (sz,)
	Time series for which the envelope should be computed.
If shape is (sz,), the time series is assumed to be univariate.



	radiusint (default: 1)
	Radius to be used for the envelope generation (the envelope at time
index i will be generated based on all observations from the time series
at indices comprised between i-radius and i+radius).



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	envelope_downarray-like, shape=(sz, d)
	Lower-side of the envelope.



	envelope_uparray-like, shape=(sz, d)
	Upper-side of the envelope.










See also


	lb_keogh
	Compute LB_Keogh similarity







References



[1]
Keogh, E. Exact indexing of dynamic time warping. In International
Conference on Very Large Data Bases, 2002. pp 406-417.





Examples

>>> ts1 = [1, 2, 3, 2, 1]
>>> env_low, env_up = lb_envelope(ts1, radius=1)
>>> env_low
array([[1.],
       [1.],
       [2.],
       [1.],
       [1.]])
>>> env_up
array([[2.],
       [3.],
       [3.],
       [3.],
       [2.]])










Examples using tslearn.metrics.lb_envelope

[image: ]LB_Keogh

  LB_Keogh
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tslearn.metrics.lb_keogh


	
tslearn.metrics.lb_keogh(ts_query, ts_candidate=None, radius=1, envelope_candidate=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/dtw_variants.py#L1963-L2038]

	Compute LB_Keogh.

LB_Keogh was originally presented in [1].


	Parameters:

	
	ts_queryarray-like, shape=(sz1, 1) or (sz1,)
	Univariate query time series to compare to the envelope of the candidate.



	ts_candidateNone or array-like, shape=(sz2, 1) or (sz2,) (default: None)
	Univariate candidate time series. None means the envelope is provided via
envelope_candidate parameter and hence does not
need to be computed again.



	radiusint (default: 1)
	Radius to be used for the envelope generation (the envelope at time
index i will be generated based on
all observations from the candidate time series at indices comprised
between i-radius and i+radius). Not used
if ts_candidate is None.



	envelope_candidate: pair of array-like (envelope_down, envelope_up) or None
	

	(default: None)
	Pre-computed envelope of the candidate time series. If set to None, it
is computed based on ts_candidate.







	Returns:

	
	float
	Distance between the query time series and the envelope of the
candidate time series.










See also


	lb_envelope
	Compute LB_Keogh-related envelope







Notes

This method requires a ts_query and ts_candidate (or
envelope_candidate, depending on the call) to be of equal size.

References



[1]
Keogh, E. Exact indexing of dynamic time warping. In International
Conference on Very Large Data Bases, 2002. pp 406-417.





Examples

>>> ts1 = [1, 2, 3, 2, 1]
>>> ts2 = [0, 0, 0, 0, 0]
>>> env_low, env_up = lb_envelope(ts1, radius=1)
>>> lb_keogh(ts_query=ts2,
...          envelope_candidate=(env_low, env_up))  
2.8284...
>>> lb_keogh(ts_query=ts2,
...          ts_candidate=ts1,
...          radius=1)  
2.8284...










Examples using tslearn.metrics.lb_keogh

[image: ]LB_Keogh

  LB_Keogh
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tslearn.metrics.sigma_gak


	
tslearn.metrics.sigma_gak(dataset, n_samples=100, random_state=None, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/softdtw_variants.py#L344-L406]

	Compute sigma value to be used for GAK.

This method was originally presented in [1].


	Parameters:

	
	datasetarray-like, shape=(n_ts, sz, d) or (n_ts, sz1) or (sz,)
	A dataset of time series.
If shape is (n_ts, sz), the dataset is composed of univariate time series.
If shape is (sz,), the dataset is composed of a unique univariate time series.



	n_samplesint (default: 100)
	Number of samples on which median distance should be estimated.



	random_stateinteger or numpy.RandomState or None (default: None)
	The generator used to draw the samples. If an integer is given, it
fixes the seed. Defaults to the global numpy random number generator.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	float
	Suggested bandwidth (\(\sigma\)) for the Global Alignment kernel.










See also


	gak
	Compute Global Alignment kernel



	cdist_gak
	Compute cross-similarity matrix using Global Alignment kernel







References



[1]

	Cuturi, “Fast global alignment kernels,” ICML 2011.








Examples

>>> dataset = [[1, 2, 2, 3], [1., 2., 3., 4.]]
>>> sigma_gak(dataset=dataset,
...           n_samples=200,
...           random_state=0)  
2.0...
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tslearn.metrics.gamma_soft_dtw


	
tslearn.metrics.gamma_soft_dtw(dataset, n_samples=100, random_state=None, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/softdtw_variants.py#L409-L461]

	Compute gamma value to be used for GAK/Soft-DTW.

This method was originally presented in [1].


	Parameters:

	
	datasetarray-like, shape=(n_ts, sz, d) or (n_ts, sz1) or (sz,)
	A dataset of time series.
If shape is (n_ts, sz), the dataset is composed of univariate time series.
If shape is (sz,), the dataset is composed of a unique univariate time series.



	n_samplesint (default: 100)
	Number of samples on which median distance should be estimated.



	random_stateinteger or numpy.RandomState or None (default: None)
	The generator used to draw the samples. If an integer is given, it
fixes the seed. Defaults to the global numpy random number generator.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	float
	Suggested \(\gamma\) parameter for the Soft-DTW.










See also


	sigma_gak
	Compute sigma parameter for Global Alignment kernel







References



[1]

	Cuturi, “Fast global alignment kernels,” ICML 2011.








Examples

>>> dataset = [[1, 2, 2, 3], [1., 2., 3., 4.]]
>>> gamma_soft_dtw(dataset=dataset,
...                n_samples=200,
...                random_state=0)  
8.0...
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tslearn.metrics.SoftDTWLossPyTorch


	
tslearn.metrics.SoftDTWLossPyTorch(gamma=1.0, normalize=False, dist_func=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/metrics/soft_dtw_loss_pytorch.py#L22-L26]

	Soft-DTW loss function in PyTorch.

Soft-DTW was originally presented in [1] and is
discussed in more details in our
user-guide page on DTW and its variants.

Soft-DTW is computed as:


\[\text{soft-DTW}_{\gamma}(X, Y) =
    \min_{\pi}{}^\gamma \sum_{(i, j) \in \pi} d \left( X_i, Y_j \right)\]

where \(d\) is a distance function or a dissimilarity measure
supporting PyTorch automatic differentiation and \(\min^\gamma\) is
the soft-min operator of parameter \(\gamma\) defined as:


\[\min{}^\gamma \left( a_{1}, ..., a_{n} \right) =
    - \gamma \log \sum_{i=1}^{n} e^{- a_{i} / \gamma}\]

In the limit case \(\gamma = 0\), \(\min^\gamma\) reduces to a
hard-min operator. The soft-DTW is then defined as the square of the DTW
dissimilarity measure when \(d\) is the squared Euclidean distance.

Contrary to DTW, soft-DTW is not bounded below by zero, and we even have:


\[\text{soft-DTW}_{\gamma}(X, Y) \rightarrow - \infty \text{ when } \gamma \rightarrow + \infty\]

In [2], new dissimilarity measures are defined, that rely on soft-DTW.
In particular, soft-DTW divergence is introduced to counteract the non-positivity of soft-DTW:


\[D_{\gamma} \left( X, Y \right) =
    \text{soft-DTW}_{\gamma}(X, Y)
    - \frac{1}{2} \left( \text{soft-DTW}_{\gamma}(X, X) + \text{soft-DTW}_{\gamma}(Y, Y) \right)\]

This divergence has the advantage of being minimized for \(X = Y\)
and being exactly 0 in that case.


	Parameters:

	
	gammafloat
	Regularization parameter.
It should be strictly positive.
Lower is less smoothed (closer to true DTW).



	normalizebool
	If True, the Soft-DTW divergence is used.
The Soft-DTW divergence is always positive.
Optional, default: False.



	dist_funccallable
	Distance function or dissimilarity measure.
It takes two input arguments of shape (batch_size, ts_length, dim).
It should support PyTorch automatic differentiation.
Optional, default: None
If None, the squared Euclidean distance is used.










See also


	soft_dtw
	Compute Soft-DTW metric between two time series.



	cdist_soft_dtw
	Compute cross-similarity matrix using Soft-DTW metric.



	cdist_soft_dtw_normalized
	Compute cross-similarity matrix using a normalized version of the Soft-DTW metric.







References



[1]
Marco Cuturi & Mathieu Blondel. “Soft-DTW: a Differentiable Loss Function for
Time-Series”, ICML 2017.




[2]
Mathieu Blondel, Arthur Mensch & Jean-Philippe Vert.
“Differentiable divergences between time series”,
International Conference on Artificial Intelligence and Statistics, 2021.





Examples

>>> import torch
>>> from tslearn.metrics import SoftDTWLossPyTorch
>>> soft_dtw_loss = SoftDTWLossPyTorch(gamma=0.1)
>>> x = torch.zeros((4, 3, 2), requires_grad=True)
>>> y = torch.arange(0, 24).reshape(4, 3, 2)
>>> soft_dtw_loss_mean_value = soft_dtw_loss(x, y).mean()
>>> print(soft_dtw_loss_mean_value)
tensor(1081., grad_fn=<MeanBackward0>)
>>> soft_dtw_loss_mean_value.backward()
>>> print(x.grad.shape)
torch.Size([4, 3, 2])
>>> print(x.grad)
tensor([[[  0.0000,  -0.5000],
         [ -1.0000,  -1.5000],
         [ -2.0000,  -2.5000]],

        [[ -3.0000,  -3.5000],
         [ -4.0000,  -4.5000],
         [ -5.0000,  -5.5000]],

        [[ -6.0000,  -6.5000],
         [ -7.0000,  -7.5000],
         [ -8.0000,  -8.5000]],

        [[ -9.0000,  -9.5000],
         [-10.0000, -10.5000],
         [-11.0000, -11.5000]]])










Examples using tslearn.metrics.SoftDTWLossPyTorch

[image: ]Soft-DTW loss for PyTorch neural network

  Soft-DTW loss for PyTorch neural network
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tslearn.neural_network

The tslearn.neural_network module contains multi-layer perceptron
models for time series classification and regression.

These are straight-forward adaptations of scikit-learn models.

Classes



	TimeSeriesMLPClassifier([...])

	A Multi-Layer Perceptron classifier for time series.



	TimeSeriesMLPRegressor([hidden_layer_sizes, ...])

	A Multi-Layer Perceptron regressor for time series.
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tslearn.neural_network.TimeSeriesMLPClassifier


	
class tslearn.neural_network.TimeSeriesMLPClassifier(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neural_network/neural_network.py#L9-L105]

	A Multi-Layer Perceptron classifier for time series.

This class mainly reshapes data so that it can be fed to scikit-learn’s
MLPClassifier.

It accepts the exact same hyper-parameters as MLPClassifier, check
scikit-learn docs [https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html]
for a list of parameters and attributes.

Notes

This method requires a dataset of equal-sized time series.

Examples

>>> from tslearn.generators import random_walk_blobs
>>> X, y = random_walk_blobs(n_ts_per_blob=30, sz=16, d=2, n_blobs=3,
...                          random_state=0)
>>> mlp = TimeSeriesMLPClassifier(hidden_layer_sizes=(64, 64),
...                               random_state=0)
>>> mlp.fit(X, y)  
TimeSeriesMLPClassifier(...)
>>> [c.shape for c in mlp.coefs_]
[(32, 64), (64, 64), (64, 3)]
>>> [c.shape for c in mlp.intercepts_]
[(64,), (64,), (3,)]





Methods



	fit(X, y)

	Fit the model using X as training data and y as target values



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	partial_fit(X, y[, classes])

	Update the model with a single iteration over the given data.



	predict(X)

	Predict the class labels for the provided data



	predict_log_proba(X)

	Predict the class log-probabilities for the provided data



	predict_proba(X)

	Predict the class probabilities for the provided data



	score(X, y[, sample_weight])

	Return the mean accuracy on the given test data and labels.



	set_params(**params)

	Set the parameters of this estimator.



	set_partial_fit_request(*[, classes])

	Request metadata passed to the partial_fit method.



	set_score_request(*[, sample_weight])

	Request metadata passed to the score method.







	
fit(X, y)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neural_network/neural_network.py#L37-L54]

	Fit the model using X as training data and y as target values


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Training data.



	yarray-like, shape (n_ts, ) or (n_ts, dim_y)
	Target values.







	Returns:

	
	TimeSeriesMLPClassifier
	The fitted estimator














	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
partial_fit(X, y, classes=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L1176-L1209]

	Update the model with a single iteration over the given data.


	Parameters:

	
	X{array-like, sparse matrix} of shape (n_samples, n_features)
	The input data.



	yarray-like of shape (n_samples,)
	The target values.



	classesarray of shape (n_classes,), default=None
	Classes across all calls to partial_fit.
Can be obtained via np.unique(y_all), where y_all is the
target vector of the entire dataset.
This argument is required for the first call to partial_fit
and can be omitted in the subsequent calls.
Note that y doesn’t need to contain all labels in classes.







	Returns:

	
	selfobject
	Trained MLP model.














	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neural_network/neural_network.py#L56-L71]

	Predict the class labels for the provided data


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Test samples.







	Returns:

	
	array, shape = (n_ts, )
	Array of predicted class labels














	
predict_log_proba(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neural_network/neural_network.py#L73-L88]

	Predict the class log-probabilities for the provided data


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Test samples.







	Returns:

	
	array, shape = (n_ts, n_classes)
	Array of predicted class log-probabilities














	
predict_proba(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neural_network/neural_network.py#L90-L105]

	Predict the class probabilities for the provided data


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Test samples.







	Returns:

	
	array, shape = (n_ts, n_classes)
	Array of predicted class probabilities














	
score(X, y, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L680-L706]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters:

	
	Xarray-like of shape (n_samples, n_features)
	Test samples.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True labels for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns:

	
	scorefloat
	Mean accuracy of self.predict(X) w.r.t. y.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_partial_fit_request(*, classes: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → TimeSeriesMLPClassifier[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the partial_fit method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to partial_fit if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to partial_fit.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	classesstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for classes parameter in partial_fit.







	Returns:

	
	selfobject
	The updated object.














	
set_score_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → TimeSeriesMLPClassifier[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the score method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to score.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in score.







	Returns:

	
	selfobject
	The updated object.
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tslearn.neural_network.TimeSeriesMLPRegressor


	
class tslearn.neural_network.TimeSeriesMLPRegressor(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neural_network/neural_network.py#L108-L168]

	A Multi-Layer Perceptron regressor for time series.

This class mainly reshapes data so that it can be fed to scikit-learn’s
MLPRegressor.

It accepts the exact same hyper-parameters as MLPRegressor, check
scikit-learn docs [https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html]
for a list of parameters and attributes.

Notes

This method requires a dataset of equal-sized time series.

Examples

>>> mlp = TimeSeriesMLPRegressor(hidden_layer_sizes=(64, 64),
...                               random_state=0)
>>> mlp.fit(X=[[1, 2, 3], [1, 1.2, 3.2], [3, 2, 1]],
...         y=[0, 0, 1])  
TimeSeriesMLPRegressor(...)
>>> [c.shape for c in mlp.coefs_]
[(3, 64), (64, 64), (64, 1)]
>>> [c.shape for c in mlp.intercepts_]
[(64,), (64,), (1,)]





Methods



	fit(X, y)

	Fit the model using X as training data and y as target values



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	partial_fit(X, y)

	Update the model with a single iteration over the given data.



	predict(X)

	Predict the target for the provided data



	score(X, y[, sample_weight])

	Return the coefficient of determination of the prediction.



	set_params(**params)

	Set the parameters of this estimator.



	set_score_request(*[, sample_weight])

	Request metadata passed to the score method.







	
fit(X, y)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neural_network/neural_network.py#L134-L151]

	Fit the model using X as training data and y as target values


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Training data.



	yarray-like, shape (n_ts, ) or (n_ts, dim_y)
	Target values.







	Returns:

	
	TimeSeriesMLPRegressor
	The fitted estimator














	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
partial_fit(X, y)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L1628-L1646]

	Update the model with a single iteration over the given data.


	Parameters:

	
	X{array-like, sparse matrix} of shape (n_samples, n_features)
	The input data.



	yndarray of shape (n_samples,)
	The target values.







	Returns:

	
	selfobject
	Trained MLP model.














	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neural_network/neural_network.py#L153-L168]

	Predict the target for the provided data


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Test samples.







	Returns:

	
	array, shape = (n_ts, ) or (n_ts, dim_y)
	Array of predicted targets














	
score(X, y, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L717-L761]

	Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as
\((1 - \frac{u}{v})\), where \(u\) is the residual
sum of squares ((y_true - y_pred)** 2).sum() and \(v\)
is the total sum of squares ((y_true - y_true.mean()) ** 2).sum().
The best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always predicts
the expected value of y, disregarding the input features, would get
a \(R^2\) score of 0.0.


	Parameters:

	
	Xarray-like of shape (n_samples, n_features)
	Test samples. For some estimators this may be a precomputed
kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted), where n_samples_fitted
is the number of samples used in the fitting for the estimator.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True values for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns:

	
	scorefloat
	\(R^2\) of self.predict(X) w.r.t. y.









Notes

The \(R^2\) score used when calling score on a regressor uses
multioutput='uniform_average' from version 0.23 to keep consistent
with default value of r2_score() [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score].
This influences the score method of all the multioutput
regressors (except for
MultiOutputRegressor [https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor]).






	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_score_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → TimeSeriesMLPRegressor[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the score method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to score.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in score.







	Returns:

	
	selfobject
	The updated object.
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tslearn.neighbors

The tslearn.neighbors module gathers nearest neighbor algorithms using
time series metrics.

Classes



	KNeighborsTimeSeries([n_neighbors, metric, ...])

	Unsupervised learner for implementing neighbor searches for Time Series.



	KNeighborsTimeSeriesClassifier([...])

	Classifier implementing the k-nearest neighbors vote for Time Series.



	KNeighborsTimeSeriesRegressor([n_neighbors, ...])

	Classifier implementing the k-nearest neighbors vote for Time Series.
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class tslearn.neighbors.KNeighborsTimeSeries(n_neighbors=5, metric='dtw', metric_params=None, n_jobs=None, verbose=0)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L172-L350]

	Unsupervised learner for implementing neighbor searches for Time Series.


	Parameters:

	
	n_neighborsint (default: 5)
	Number of nearest neighbors to be considered for the decision.



	metric{‘dtw’, ‘softdtw’, ‘ctw’, ‘euclidean’, ‘sqeuclidean’,               ‘cityblock’,  ‘sax’} (default: ‘dtw’)
	Metric to be used at the core of the nearest neighbor procedure.
DTW and SAX are described in more detail in tslearn.metrics.
When SAX is provided as a metric, the data is expected to be
normalized such that each time series has zero mean and unit
variance. Other metrics are described in scipy.spatial.distance doc [https://docs.scipy.org/doc/scipy/reference/spatial.distance.html].



	metric_paramsdict or None (default: None)
	Dictionary of metric parameters.
For metrics that accept parallelization of the cross-distance matrix
computations, n_jobs and verbose keys passed in metric_params
are overridden by the n_jobs and verbose arguments.
For ‘sax’ metric, these are hyper-parameters to be passed at the 
creation of the SymbolicAggregateApproximation object.



	n_jobsint or None, optional (default=None)
	The number of jobs to run in parallel for cross-distance matrix
computations.
Ignored if the cross-distance matrix cannot be computed using
parallelization.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learns’
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.









Notes

The training data are saved to disk if this model is
serialized and may result in a large model file if the training
dataset is large.

Examples

>>> time_series = to_time_series_dataset([[1, 2, 3, 4],
...                                       [3, 3, 2, 0],
...                                       [1, 2, 2, 4]])
>>> knn = KNeighborsTimeSeries(n_neighbors=1).fit(time_series)
>>> dataset = to_time_series_dataset([[1, 1, 2, 2, 2, 3, 4]])
>>> dist, ind = knn.kneighbors(dataset, return_distance=True)
>>> dist
array([[0.]])
>>> print(ind)
[[0]]
>>> knn2 = KNeighborsTimeSeries(n_neighbors=10,
...                             metric="euclidean").fit(time_series)
>>> print(knn2.kneighbors(return_distance=False))
[[2 1]
 [2 0]
 [0 1]]





Methods



	fit(X[, y])

	Fit the model using X as training data



	from_hdf5(path)

	Load model from a HDF5 file.



	from_json(path)

	Load model from a JSON file.



	from_pickle(path)

	Load model from a pickle file.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	kneighbors([X, n_neighbors, return_distance])

	Finds the K-neighbors of a point.



	kneighbors_graph([X, n_neighbors, mode])

	Compute the (weighted) graph of k-Neighbors for points in X.



	radius_neighbors([X, radius, ...])

	Find the neighbors within a given radius of a point or points.



	radius_neighbors_graph([X, radius, mode, ...])

	Compute the (weighted) graph of Neighbors for points in X.



	set_params(**params)

	Set the parameters of this estimator.



	to_hdf5(path)

	Save model to a HDF5 file.



	to_json(path)

	Save model to a JSON file.



	to_pickle(path)

	Save model to a pickle file.







	
fit(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L257-L284]

	Fit the model using X as training data


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Training data.














	
classmethod from_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L185-L211]

	Load model from a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L226-L259]

	Load model from a JSON file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L274-L290]

	Load model from a pickle file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
kneighbors(X=None, n_neighbors=None, return_distance=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L286-L350]

	Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	The query time series.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors to get (default is the value passed to the
constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns:

	
	distarray
	Array representing the distance to points, only present if
return_distance=True



	indarray
	Indices of the nearest points in the population matrix.














	
kneighbors_graph(X=None, n_neighbors=None, mode='connectivity')[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/neighbors/_base.py#L923-L1004]

	Compute the (weighted) graph of k-Neighbors for points in X.


	Parameters:

	
	X{array-like, sparse matrix} of shape (n_queries, n_features),             or (n_queries, n_indexed) if metric == ‘precomputed’, default=None
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
For metric='precomputed' the shape should be
(n_queries, n_indexed). Otherwise the shape should be
(n_queries, n_features).



	n_neighborsint, default=None
	Number of neighbors for each sample. The default is the value
passed to the constructor.



	mode{‘connectivity’, ‘distance’}, default=’connectivity’
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are distances between points, type of distance
depends on the selected metric parameter in
NearestNeighbors class.







	Returns:

	
	Asparse-matrix of shape (n_queries, n_samples_fit)
	n_samples_fit is the number of samples in the fitted data.
A[i, j] gives the weight of the edge connecting i to j.
The matrix is of CSR format.










See also


	NearestNeighbors.radius_neighbors_graph
	Compute the (weighted) graph of Neighbors for points in X.







Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 1.],
       [1., 0., 1.]])










	
radius_neighbors(X=None, radius=None, return_distance=True, sort_results=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/neighbors/_base.py#L1058-L1269]

	Find the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset
lying in a ball with size radius around the points of the query
array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their
query point.


	Parameters:

	
	X{array-like, sparse matrix} of (n_samples, n_features), default=None
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	radiusfloat, default=None
	Limiting distance of neighbors to return. The default is the value
passed to the constructor.



	return_distancebool, default=True
	Whether or not to return the distances.



	sort_resultsbool, default=False
	If True, the distances and indices will be sorted by increasing
distances before being returned. If False, the results may not
be sorted. If return_distance=False, setting sort_results=True
will result in an error.


New in version 0.22.









	Returns:

	
	neigh_distndarray of shape (n_samples,) of arrays
	Array representing the distances to each point, only present if
return_distance=True. The distance values are computed according
to the metric constructor parameter.



	neigh_indndarray of shape (n_samples,) of arrays
	An array of arrays of indices of the approximate nearest points
from the population matrix that lie within a ball of size
radius around the query points.









Notes

Because the number of neighbors of each point is not necessarily
equal, the results for multiple query points cannot be fit in a
standard data array.
For efficiency, radius_neighbors returns arrays of objects, where
each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who’s
the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(radius=1.6)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]





The first array returned contains the distances to all points which
are closer than 1.6, while the second array returned contains their
indices.  In general, multiple points can be queried at the same time.






	
radius_neighbors_graph(X=None, radius=None, mode='connectivity', sort_results=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/neighbors/_base.py#L1271-L1359]

	Compute the (weighted) graph of Neighbors for points in X.

Neighborhoods are restricted the points at a distance lower than
radius.


	Parameters:

	
	X{array-like, sparse matrix} of shape (n_samples, n_features), default=None
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	radiusfloat, default=None
	Radius of neighborhoods. The default is the value passed to the
constructor.



	mode{‘connectivity’, ‘distance’}, default=’connectivity’
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are distances between points, type of distance
depends on the selected metric parameter in
NearestNeighbors class.



	sort_resultsbool, default=False
	If True, in each row of the result, the non-zero entries will be
sorted by increasing distances. If False, the non-zero entries may
not be sorted. Only used with mode=’distance’.


New in version 0.22.









	Returns:

	
	Asparse-matrix of shape (n_queries, n_samples_fit)
	n_samples_fit is the number of samples in the fitted data.
A[i, j] gives the weight of the edge connecting i to j.
The matrix is of CSR format.










See also


	kneighbors_graph
	Compute the (weighted) graph of k-Neighbors for points in X.







Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(radius=1.5)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 0.],
       [1., 0., 1.]])










	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
to_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L164-L183]

	Save model to a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full file path. File must not already exist.







	Raises:

	
	FileExistsError
	If a file with the same path already exists.














	
to_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L213-L224]

	Save model to a JSON file.


	Parameters:

	
	pathstr
	Full file path.














	
to_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L261-L272]

	Save model to a pickle file.


	Parameters:

	
	pathstr
	Full file path.


















Examples using tslearn.neighbors.KNeighborsTimeSeries

[image: ]k-NN search

  k-NN search


[image: ]
Nearest neighbors
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tslearn.neighbors.KNeighborsTimeSeriesClassifier


	
class tslearn.neighbors.KNeighborsTimeSeriesClassifier(n_neighbors=5, weights='uniform', metric='dtw', metric_params=None, n_jobs=None, verbose=0)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L353-L562]

	Classifier implementing the k-nearest neighbors vote for Time Series.


	Parameters:

	
	n_neighborsint (default: 5)
	Number of nearest neighbors to be considered for the decision.



	weightsstr or callable, optional (default: ‘uniform’)
	Weight function used in prediction. Possible values:


	‘uniform’ : uniform weights. All points in each neighborhood are
weighted equally.


	‘distance’ : weight points by the inverse of their distance. in this
case, closer neighbors of a query point
will have a greater influence than neighbors which are further away.


	[callable] : a user-defined function which accepts an array of
distances, and returns an array of the same
shape containing the weights.






	metricone of the metrics allowed for KNeighborsTimeSeries
	

	class (default: ‘dtw’)
	Metric to be used at the core of the nearest neighbor procedure



	metric_paramsdict or None (default: None)
	Dictionnary of metric parameters.
For metrics that accept parallelization of the cross-distance matrix
computations, n_jobs and verbose keys passed in metric_params
are overridden by the n_jobs and verbose arguments.
For ‘sax’ metric, these are hyper-parameters to be passed at the 
creation of the SymbolicAggregateApproximation object.



	n_jobsint or None, optional (default=None)
	The number of jobs to run in parallel for cross-distance matrix
computations.
Ignored if the cross-distance matrix cannot be computed using
parallelization.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learns’
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.



	verboseint, optional (default=0)
	The verbosity level: if non zero, progress messages are printed.
Above 50, the output is sent to stdout.
The frequency of the messages increases with the verbosity level.
If it more than 10, all iterations are reported.
Glossary [https://joblib.readthedocs.io/en/latest/parallel.html#parallel-reference-documentation]
for more details.









Notes

The training data are saved to disk if this model is
serialized and may result in a large model file if the training
dataset is large.

Examples

>>> clf = KNeighborsTimeSeriesClassifier(n_neighbors=2, metric="dtw")
>>> clf.fit([[1, 2, 3], [1, 1.2, 3.2], [3, 2, 1]],
...         y=[0, 0, 1]).predict([[1, 2.2, 3.5]])
array([0])
>>> clf = KNeighborsTimeSeriesClassifier(n_neighbors=2,
...                                      metric="dtw",
...                                      n_jobs=2)
>>> clf.fit([[1, 2, 3], [1, 1.2, 3.2], [3, 2, 1]],
...         y=[0, 0, 1]).predict([[1, 2.2, 3.5]])
array([0])
>>> clf = KNeighborsTimeSeriesClassifier(n_neighbors=2,
...                                      metric="dtw",
...                                      metric_params={
...                                          "itakura_max_slope": 2.},
...                                      n_jobs=2)
>>> clf.fit([[1, 2, 3], [1, 1.2, 3.2], [3, 2, 1]],
...         y=[0, 0, 1]).predict([[1, 2.2, 3.5]])
array([0])





Methods



	fit(X, y)

	Fit the model using X as training data and y as target values



	from_hdf5(path)

	Load model from a HDF5 file.



	from_json(path)

	Load model from a JSON file.



	from_pickle(path)

	Load model from a pickle file.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	kneighbors([X, n_neighbors, return_distance])

	Finds the K-neighbors of a point.



	kneighbors_graph([X, n_neighbors, mode])

	Compute the (weighted) graph of k-Neighbors for points in X.



	predict(X)

	Predict the class labels for the provided data



	predict_proba(X)

	Predict the class probabilities for the provided data



	score(X, y[, sample_weight])

	Return the mean accuracy on the given test data and labels.



	set_params(**params)

	Set the parameters of this estimator.



	set_score_request(*[, sample_weight])

	Request metadata passed to the score method.



	to_hdf5(path)

	Save model to a HDF5 file.



	to_json(path)

	Save model to a JSON file.



	to_pickle(path)

	Save model to a pickle file.







	
fit(X, y)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L459-L500]

	Fit the model using X as training data and y as target values


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Training data.



	yarray-like, shape (n_ts, )
	Target values.







	Returns:

	
	KNeighborsTimeSeriesClassifier
	The fitted estimator














	
classmethod from_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L185-L211]

	Load model from a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L226-L259]

	Load model from a JSON file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L274-L290]

	Load model from a pickle file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
kneighbors(X=None, n_neighbors=None, return_distance=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L81-L169]

	Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	The query time series.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors to get (default is the value passed to the
constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns:

	
	distarray
	Array representing the distance to points, only present if
return_distance=True



	indarray
	Indices of the nearest points in the population matrix.














	
kneighbors_graph(X=None, n_neighbors=None, mode='connectivity')[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/neighbors/_base.py#L923-L1004]

	Compute the (weighted) graph of k-Neighbors for points in X.


	Parameters:

	
	X{array-like, sparse matrix} of shape (n_queries, n_features),             or (n_queries, n_indexed) if metric == ‘precomputed’, default=None
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
For metric='precomputed' the shape should be
(n_queries, n_indexed). Otherwise the shape should be
(n_queries, n_features).



	n_neighborsint, default=None
	Number of neighbors for each sample. The default is the value
passed to the constructor.



	mode{‘connectivity’, ‘distance’}, default=’connectivity’
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are distances between points, type of distance
depends on the selected metric parameter in
NearestNeighbors class.







	Returns:

	
	Asparse-matrix of shape (n_queries, n_samples_fit)
	n_samples_fit is the number of samples in the fitted data.
A[i, j] gives the weight of the edge connecting i to j.
The matrix is of CSR format.










See also


	NearestNeighbors.radius_neighbors_graph
	Compute the (weighted) graph of Neighbors for points in X.







Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 1.],
       [1., 0., 1.]])










	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L502-L530]

	Predict the class labels for the provided data


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Test samples.







	Returns:

	
	array, shape = (n_ts, )
	Array of predicted class labels














	
predict_proba(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L532-L559]

	Predict the class probabilities for the provided data


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Test samples.







	Returns:

	
	array, shape = (n_ts, n_classes)
	Array of predicted class probabilities














	
score(X, y, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L680-L706]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters:

	
	Xarray-like of shape (n_samples, n_features)
	Test samples.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True labels for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns:

	
	scorefloat
	Mean accuracy of self.predict(X) w.r.t. y.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_score_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → KNeighborsTimeSeriesClassifier[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the score method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to score.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in score.







	Returns:

	
	selfobject
	The updated object.














	
to_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L164-L183]

	Save model to a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full file path. File must not already exist.







	Raises:

	
	FileExistsError
	If a file with the same path already exists.














	
to_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L213-L224]

	Save model to a JSON file.


	Parameters:

	
	pathstr
	Full file path.














	
to_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L261-L272]

	Save model to a pickle file.


	Parameters:

	
	pathstr
	Full file path.


















Examples using tslearn.neighbors.KNeighborsTimeSeriesClassifier
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Nearest neighbors

  Nearest neighbors


[image: ]Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier

  Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier
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  1-NN with SAX + MINDIST








            

          

      

      

    

  

  
    
    

    tslearn.neighbors.KNeighborsTimeSeriesRegressor
    

    

    

    

    

    
 
  

    
      
          
            
  
tslearn.neighbors.KNeighborsTimeSeriesRegressor


	
class tslearn.neighbors.KNeighborsTimeSeriesRegressor(n_neighbors=5, weights='uniform', metric='dtw', metric_params=None, n_jobs=None, verbose=0)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L565-L717]

	Classifier implementing the k-nearest neighbors vote for Time Series.


	Parameters:

	
	n_neighborsint (default: 5)
	Number of nearest neighbors to be considered for the decision.



	weightsstr or callable, optional (default: ‘uniform’)
	Weight function used in prediction. Possible values:


	‘uniform’ : uniform weights. All points in each neighborhood are
weighted equally.


	‘distance’ : weight points by the inverse of their distance. in this
case, closer neighbors of a query point
will have a greater influence than neighbors which are further away.


	[callable] : a user-defined function which accepts an array of
distances, and returns an array of the same
shape containing the weights.






	metricone of the metrics allowed for KNeighborsTimeSeries
	

	class (default: ‘dtw’)
	Metric to be used at the core of the nearest neighbor procedure



	metric_paramsdict or None (default: None)
	Dictionnary of metric parameters.
For metrics that accept parallelization of the cross-distance matrix
computations, n_jobs and verbose keys passed in metric_params
are overridden by the n_jobs and verbose arguments.
For ‘sax’ metric, these are hyper-parameters to be passed at the 
creation of the SymbolicAggregateApproximation object.



	n_jobsint or None, optional (default=None)
	The number of jobs to run in parallel for cross-distance matrix
computations.
Ignored if the cross-distance matrix cannot be computed using
parallelization.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learns’
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.



	verboseint, optional (default=0)
	The verbosity level: if non zero, progress messages are printed.
Above 50, the output is sent to stdout.
The frequency of the messages increases with the verbosity level.
If it more than 10, all iterations are reported.
Glossary [https://joblib.readthedocs.io/en/latest/parallel.html#parallel-reference-documentation]
for more details.









Examples

>>> clf = KNeighborsTimeSeriesRegressor(n_neighbors=2, metric="dtw")
>>> clf.fit([[1, 2, 3], [1, 1.2, 3.2], [3, 2, 1]],
...         y=[0.1, 0.1, 1.1]).predict([[1, 2.2, 3.5]])
array([0.1])
>>> clf = KNeighborsTimeSeriesRegressor(n_neighbors=2,
...                                     metric="dtw",
...                                     n_jobs=2)
>>> clf.fit([[1, 2, 3], [1, 1.2, 3.2], [3, 2, 1]],
...         y=[0.1, 0.1, 1.1]).predict([[1, 2.2, 3.5]])
array([0.1])
>>> clf = KNeighborsTimeSeriesRegressor(n_neighbors=2,
...                                     metric="dtw",
...                                     metric_params={
...                                         "itakura_max_slope": 2.},
...                                     n_jobs=2)
>>> clf.fit([[1, 2, 3], [1, 1.2, 3.2], [3, 2, 1]],
...         y=[0.1, 0.1, 1.1]).predict([[1, 2.2, 3.5]])
array([0.1])





Methods



	fit(X, y)

	Fit the model using X as training data and y as target values



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	kneighbors([X, n_neighbors, return_distance])

	Finds the K-neighbors of a point.



	kneighbors_graph([X, n_neighbors, mode])

	Compute the (weighted) graph of k-Neighbors for points in X.



	predict(X)

	Predict the target for the provided data



	score(X, y[, sample_weight])

	Return the coefficient of determination of the prediction.



	set_params(**params)

	Set the parameters of this estimator.



	set_score_request(*[, sample_weight])

	Request metadata passed to the score method.







	
fit(X, y)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L650-L684]

	Fit the model using X as training data and y as target values


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Training data.



	yarray-like, shape (n_ts, ) or (n_ts, dim_y)
	Target values.







	Returns:

	
	KNeighborsTimeSeriesRegressor
	The fitted estimator














	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
kneighbors(X=None, n_neighbors=None, return_distance=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L81-L169]

	Finds the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	The query time series.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors to get (default is the value passed to the
constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns:

	
	distarray
	Array representing the distance to points, only present if
return_distance=True



	indarray
	Indices of the nearest points in the population matrix.














	
kneighbors_graph(X=None, n_neighbors=None, mode='connectivity')[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/neighbors/_base.py#L923-L1004]

	Compute the (weighted) graph of k-Neighbors for points in X.


	Parameters:

	
	X{array-like, sparse matrix} of shape (n_queries, n_features),             or (n_queries, n_indexed) if metric == ‘precomputed’, default=None
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
For metric='precomputed' the shape should be
(n_queries, n_indexed). Otherwise the shape should be
(n_queries, n_features).



	n_neighborsint, default=None
	Number of neighbors for each sample. The default is the value
passed to the constructor.



	mode{‘connectivity’, ‘distance’}, default=’connectivity’
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are distances between points, type of distance
depends on the selected metric parameter in
NearestNeighbors class.







	Returns:

	
	Asparse-matrix of shape (n_queries, n_samples_fit)
	n_samples_fit is the number of samples in the fitted data.
A[i, j] gives the weight of the edge connecting i to j.
The matrix is of CSR format.










See also


	NearestNeighbors.radius_neighbors_graph
	Compute the (weighted) graph of Neighbors for points in X.







Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 1.],
       [1., 0., 1.]])










	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/neighbors/neighbors.py#L686-L714]

	Predict the target for the provided data


	Parameters:

	
	Xarray-like, shape (n_ts, sz, d)
	Test samples.







	Returns:

	
	array, shape = (n_ts, ) or (n_ts, dim_y)
	Array of predicted targets














	
score(X, y, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L717-L761]

	Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as
\((1 - \frac{u}{v})\), where \(u\) is the residual
sum of squares ((y_true - y_pred)** 2).sum() and \(v\)
is the total sum of squares ((y_true - y_true.mean()) ** 2).sum().
The best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always predicts
the expected value of y, disregarding the input features, would get
a \(R^2\) score of 0.0.


	Parameters:

	
	Xarray-like of shape (n_samples, n_features)
	Test samples. For some estimators this may be a precomputed
kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted), where n_samples_fitted
is the number of samples used in the fitting for the estimator.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True values for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns:

	
	scorefloat
	\(R^2\) of self.predict(X) w.r.t. y.









Notes

The \(R^2\) score used when calling score on a regressor uses
multioutput='uniform_average' from version 0.23 to keep consistent
with default value of r2_score() [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score].
This influences the score method of all the multioutput
regressors (except for
MultiOutputRegressor [https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor]).






	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_score_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → KNeighborsTimeSeriesRegressor[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the score method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to score.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in score.







	Returns:

	
	selfobject
	The updated object.





















            

          

      

      

    

  

  
    
    

    tslearn.piecewise
    

    

    

    

    

    
 
  

    
      
          
            
  
tslearn.piecewise

The tslearn.piecewise module gathers time series piecewise
approximation algorithms.

Classes



	OneD_SymbolicAggregateApproximation([...])

	One-D Symbolic Aggregate approXimation (1d-SAX) transformation.



	PiecewiseAggregateApproximation([n_segments])

	Piecewise Aggregate Approximation (PAA) transformation.



	SymbolicAggregateApproximation([n_segments, ...])

	Symbolic Aggregate approXimation (SAX) transformation.
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tslearn.piecewise.OneD_SymbolicAggregateApproximation


	
class tslearn.piecewise.OneD_SymbolicAggregateApproximation(n_segments=1, alphabet_size_avg=5, alphabet_size_slope=5, sigma_l=None, scale=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L504-L777]

	One-D Symbolic Aggregate approXimation (1d-SAX) transformation.

1d-SAX was originally presented in [1].


	Parameters:

	
	n_segmentsint (default: 1)
	Number of PAA segments to compute.



	alphabet_size_avgint (default: 5)
	Number of SAX symbols to use to describe average values.



	alphabet_size_slopeint (default: 5)
	Number of SAX symbols to use to describe slopes.



	sigma_lfloat or None (default: None)
	Scale parameter of the Gaussian distribution used to quantize slopes.
If None, the formula given in [1] is
used: \(\sigma_L = \sqrt{0.03 / L}\) where \(L\) is the
length of each segment.



	scale: bool (default: False)
	Whether input data should be scaled for each feature of each time 
series to have zero mean and unit variance.
Default for this parameter is set to False in version 0.4 to ensure
backward compatibility, but is likely to change in a future version.







	Attributes:

	
	breakpoints_avg_numpy.ndarray of shape (alphabet_size_avg - 1, )
	List of breakpoints used to generate SAX symbols for average values.



	breakpoints_slope_numpy.ndarray of shape (alphabet_size_slope - 1, )
	List of breakpoints used to generate SAX symbols for slopes.









Notes

This method requires a dataset of equal-sized time series.

References



[1]
(1,2)
S. Malinowski, T. Guyet, R. Quiniou, R. Tavenard. 1d-SAX: a Novel
Symbolic Representation for Time Series. IDA 2013.





Examples

>>> one_d_sax = OneD_SymbolicAggregateApproximation(n_segments=3,
...         alphabet_size_avg=2, alphabet_size_slope=2, sigma_l=1.)
>>> data = [[-1., 2., 0.1, -1., 1., -1.], [1., 3.2, -1., -3., 1., -1.]]
>>> one_d_sax_data = one_d_sax.fit_transform(data)
>>> one_d_sax_data.shape
(2, 3, 2)
>>> one_d_sax_data
array([[[1, 1],
        [0, 0],
        [1, 0]],

       [[1, 1],
        [0, 0],
        [1, 0]]])
>>> one_d_sax.distance_sax(one_d_sax_data[0], one_d_sax_data[1])
0.0
>>> one_d_sax.distance(data[0], data[1])
0.0
>>> one_d_sax.inverse_transform(one_d_sax_data)
array([[[ 0.33724488],
        [ 1.01173463],
        [-0.33724488],
        [-1.01173463],
        [ 1.01173463],
        [ 0.33724488]],

       [[ 0.33724488],
        [ 1.01173463],
        [-0.33724488],
        [-1.01173463],
        [ 1.01173463],
        [ 0.33724488]]])
>>> one_d_sax.fit(data).sigma_l
1.0





Methods



	distance(ts1, ts2)

	Compute distance between 1d-SAX representations as defined in [1].



	distance_1d_sax(sax1, sax2)

	Compute distance between 1d-SAX representations as defined in [1].



	distance_paa(paa1, paa2)

	Compute distance between PAA representations as defined in [1].



	distance_sax(sax1, sax2)

	Compute distance between SAX representations as defined in [1].



	fit(X[, y])

	Fit a 1d-SAX representation.



	fit_transform(X[, y])

	Fit a 1d-SAX representation and transform the data accordingly.



	from_hdf5(path)

	Load model from a HDF5 file.



	from_json(path)

	Load model from a JSON file.



	from_pickle(path)

	Load model from a pickle file.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	inverse_transform(X)

	Compute time series corresponding to given 1d-SAX representations.



	set_output(*[, transform])

	Set output container.



	set_params(**params)

	Set the parameters of this estimator.



	to_hdf5(path)

	Save model to a HDF5 file.



	to_json(path)

	Save model to a JSON file.



	to_pickle(path)

	Save model to a pickle file.



	transform(X[, y])

	Transform a dataset of time series into its 1d-SAX representation.







	
distance(ts1, ts2)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L730-L751]

	Compute distance between 1d-SAX representations as defined in [1].


	Parameters:

	
	ts1array-like
	A time series



	ts2array-like
	Another time series







	Returns:

	
	float
	1d-SAX distance









References



[1]
(1,2)
S. Malinowski, T. Guyet, R. Quiniou, R. Tavenard. 1d-SAX: a
Novel Symbolic Representation for Time Series. IDA 2013.










	
distance_1d_sax(sax1, sax2)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L700-L728]

	Compute distance between 1d-SAX representations as defined in [1].


	Parameters:

	
	sax1array-like
	1d-SAX representation of a time series



	sax2array-like
	1d-SAX representation of another time series







	Returns:

	
	float
	1d-SAX distance









Notes

Unlike SAX distance, 1d-SAX distance does not lower bound Euclidean
distance between original time series.

References



[1]
(1,2)
S. Malinowski, T. Guyet, R. Quiniou, R. Tavenard. 1d-SAX: a
Novel Symbolic Representation for Time Series. IDA 2013.










	
distance_paa(paa1, paa2)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L191-L213]

	Compute distance between PAA representations as defined in [1].


	Parameters:

	
	paa1array-like
	PAA representation of a time series



	paa2array-like
	PAA representation of another time series







	Returns:

	
	float
	PAA distance









References



[1]
(1,2)
E. Keogh & M. Pazzani. Scaling up dynamic time warping for
datamining applications. SIGKDD 2000, pp. 285–289.










	
distance_sax(sax1, sax2)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L429-L452]

	Compute distance between SAX representations as defined in [1].


	Parameters:

	
	sax1array-like
	SAX representation of a time series



	sax2array-like
	SAX representation of another time series







	Returns:

	
	float
	SAX distance









References



[1]
(1,2)
J. Lin, E. Keogh, L. Wei, et al. Experiencing SAX: a novel
symbolic representation of time series.
Data Mining and Knowledge Discovery, 2007. vol. 15(107)










	
fit(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L617-L632]

	Fit a 1d-SAX representation.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	OneD_SymbolicAggregateApproximation
	self














	
fit_transform(X, y=None, **fit_params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L634-L651]

	Fit a 1d-SAX representation and transform the data accordingly.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	numpy.ndarray of integers with shape (n_ts, n_segments, 2 * d)
	1d-SAX-Transformed dataset. The order of the last dimension is:
first d elements represent average values
(standard SAX symbols) and the last d are for slopes














	
classmethod from_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L185-L211]

	Load model from a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L226-L259]

	Load model from a JSON file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L274-L290]

	Load model from a pickle file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
inverse_transform(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L753-L777]

	Compute time series corresponding to given 1d-SAX representations.


	Parameters:

	
	Xarray-like of shape (n_ts, sz_sax, 2 * d)
	A dataset of SAX series.







	Returns:

	
	numpy.ndarray of shape (n_ts, sz_original_ts, d)
	A dataset of time series corresponding to the provided
representation.














	
set_output(*, transform=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L230-L258]

	Set output container.

See Introducing the set_output API [https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py]
for an example on how to use the API.


	Parameters:

	
	transform{“default”, “pandas”}, default=None
	Configure output of transform and fit_transform.


	“default”: Default output format of a transformer


	“pandas”: DataFrame output


	None: Transform configuration is unchanged










	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
to_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L164-L183]

	Save model to a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full file path. File must not already exist.







	Raises:

	
	FileExistsError
	If a file with the same path already exists.














	
to_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L213-L224]

	Save model to a JSON file.


	Parameters:

	
	pathstr
	Full file path.














	
to_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L261-L272]

	Save model to a pickle file.


	Parameters:

	
	pathstr
	Full file path.














	
transform(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L680-L698]

	Transform a dataset of time series into its 1d-SAX representation.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	numpy.ndarray of integers with shape (n_ts, n_segments, 2 * d)
	1d-SAX-Transformed dataset


















Examples using tslearn.piecewise.OneD_SymbolicAggregateApproximation

[image: ]PAA and SAX features

  PAA and SAX features
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tslearn.piecewise.PiecewiseAggregateApproximation


	
class tslearn.piecewise.PiecewiseAggregateApproximation(n_segments=1)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L59-L258]

	Piecewise Aggregate Approximation (PAA) transformation.

PAA was originally presented in [1].


	Parameters:

	
	n_segmentsint (default: 1)
	Number of PAA segments to compute









Notes

This method requires a dataset of equal-sized time series.

References



[1]
E. Keogh & M. Pazzani. Scaling up dynamic time warping for
datamining applications. SIGKDD 2000, pp. 285–289.





Examples

>>> paa = PiecewiseAggregateApproximation(n_segments=3)
>>> data = [[-1., 2., 0.1, -1., 1., -1.], [1., 3.2, -1., -3., 1., -1.]]
>>> paa_data = paa.fit_transform(data)
>>> paa_data.shape
(2, 3, 1)
>>> paa_data
array([[[ 0.5 ],
        [-0.45],
        [ 0.  ]],

       [[ 2.1 ],
        [-2.  ],
        [ 0.  ]]])
>>> paa.distance_paa(paa_data[0], paa_data[1])  
3.15039...
>>> paa.distance(data[0], data[1])  
3.15039...
>>> paa.inverse_transform(paa_data)
array([[[ 0.5 ],
        [ 0.5 ],
        [-0.45],
        [-0.45],
        [ 0.  ],
        [ 0.  ]],

       [[ 2.1 ],
        [ 2.1 ],
        [-2.  ],
        [-2.  ],
        [ 0.  ],
        [ 0.  ]]])





Methods



	distance(ts1, ts2)

	Compute distance between PAA representations as defined in [1].



	distance_paa(paa1, paa2)

	Compute distance between PAA representations as defined in [1].



	fit(X[, y])

	Fit a PAA representation.



	fit_transform(X[, y])

	Fit a PAA representation and transform the data accordingly.



	from_hdf5(path)

	Load model from a HDF5 file.



	from_json(path)

	Load model from a JSON file.



	from_pickle(path)

	Load model from a pickle file.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	inverse_transform(X)

	Compute time series corresponding to given PAA representations.



	set_output(*[, transform])

	Set output container.



	set_params(**params)

	Set the parameters of this estimator.



	to_hdf5(path)

	Save model to a HDF5 file.



	to_json(path)

	Save model to a JSON file.



	to_pickle(path)

	Save model to a pickle file.



	transform(X[, y])

	Transform a dataset of time series into its PAA representation.







	
distance(ts1, ts2)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L215-L236]

	Compute distance between PAA representations as defined in [1].


	Parameters:

	
	ts1array-like
	A time series



	ts2array-like
	Another time series







	Returns:

	
	float
	PAA distance









References



[1]
(1,2)
E. Keogh & M. Pazzani. Scaling up dynamic time warping for
datamining applications. SIGKDD 2000, pp. 285–289.










	
distance_paa(paa1, paa2)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L191-L213]

	Compute distance between PAA representations as defined in [1].


	Parameters:

	
	paa1array-like
	PAA representation of a time series



	paa2array-like
	PAA representation of another time series







	Returns:

	
	float
	PAA distance









References



[1]
(1,2)
E. Keogh & M. Pazzani. Scaling up dynamic time warping for
datamining applications. SIGKDD 2000, pp. 285–289.










	
fit(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L126-L141]

	Fit a PAA representation.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	PiecewiseAggregateApproximation
	self














	
fit_transform(X, y=None, **fit_params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L174-L189]

	Fit a PAA representation and transform the data accordingly.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	numpy.ndarray of shape (n_ts, n_segments, d)
	PAA-Transformed dataset














	
classmethod from_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L185-L211]

	Load model from a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L226-L259]

	Load model from a JSON file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L274-L290]

	Load model from a pickle file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
inverse_transform(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L238-L255]

	Compute time series corresponding to given PAA representations.


	Parameters:

	
	Xarray-like of shape (n_ts, sz_paa, d)
	A dataset of PAA series.







	Returns:

	
	numpy.ndarray of shape (n_ts, sz_original_ts, d)
	A dataset of time series corresponding to the provided
representation.














	
set_output(*, transform=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L230-L258]

	Set output container.

See Introducing the set_output API [https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py]
for an example on how to use the API.


	Parameters:

	
	transform{“default”, “pandas”}, default=None
	Configure output of transform and fit_transform.


	“default”: Default output format of a transformer


	“pandas”: DataFrame output


	None: Transform configuration is unchanged










	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
to_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L164-L183]

	Save model to a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full file path. File must not already exist.







	Raises:

	
	FileExistsError
	If a file with the same path already exists.














	
to_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L213-L224]

	Save model to a JSON file.


	Parameters:

	
	pathstr
	Full file path.














	
to_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L261-L272]

	Save model to a pickle file.


	Parameters:

	
	pathstr
	Full file path.














	
transform(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L155-L172]

	Transform a dataset of time series into its PAA representation.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	numpy.ndarray of shape (n_ts, n_segments, d)
	PAA-Transformed dataset


















Examples using tslearn.piecewise.PiecewiseAggregateApproximation

[image: ]PAA and SAX features

  PAA and SAX features
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tslearn.piecewise.SymbolicAggregateApproximation


	
class tslearn.piecewise.SymbolicAggregateApproximation(n_segments=1, alphabet_size_avg=5, scale=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L261-L501]

	Symbolic Aggregate approXimation (SAX) transformation.

SAX was originally presented in [1].


	Parameters:

	
	n_segmentsint (default: 1)
	Number of PAA segments to compute



	alphabet_size_avgint (default: 5)
	Number of SAX symbols to use



	scale: bool (default: False)
	Whether input data should be scaled for each feature to have zero 
mean and unit variance across the dataset passed at fit time.
Default for this parameter is set to False in version 0.4 to ensure
backward compatibility, but is likely to change in a future version.







	Attributes:

	
	breakpoints_avg_numpy.ndarray of shape (alphabet_size - 1, )
	List of breakpoints used to generate SAX symbols









Notes

This method requires a dataset of equal-sized time series.

References



[1]
J. Lin, E. Keogh, L. Wei, et al. Experiencing SAX: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery,
2007. vol. 15(107)





Examples

>>> sax = SymbolicAggregateApproximation(n_segments=3, alphabet_size_avg=2)
>>> data = [[-1., 2., 0.1, -1., 1., -1.], [1., 3.2, -1., -3., 1., -1.]]
>>> sax_data = sax.fit_transform(data)
>>> sax_data.shape
(2, 3, 1)
>>> sax_data
array([[[1],
        [0],
        [1]],

       [[1],
        [0],
        [1]]])
>>> sax.distance_sax(sax_data[0], sax_data[1])  
0.0
>>> sax.distance(data[0], data[1])  
0.0
>>> sax.inverse_transform(sax_data)
array([[[ 0.67448975],
        [ 0.67448975],
        [-0.67448975],
        [-0.67448975],
        [ 0.67448975],
        [ 0.67448975]],

       [[ 0.67448975],
        [ 0.67448975],
        [-0.67448975],
        [-0.67448975],
        [ 0.67448975],
        [ 0.67448975]]])





Methods



	distance(ts1, ts2)

	Compute distance between SAX representations as defined in [1].



	distance_paa(paa1, paa2)

	Compute distance between PAA representations as defined in [1].



	distance_sax(sax1, sax2)

	Compute distance between SAX representations as defined in [1].



	fit(X[, y])

	Fit a SAX representation.



	fit_transform(X[, y])

	Fit a SAX representation and transform the data accordingly.



	from_hdf5(path)

	Load model from a HDF5 file.



	from_json(path)

	Load model from a JSON file.



	from_pickle(path)

	Load model from a pickle file.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	inverse_transform(X)

	Compute time series corresponding to given SAX representations.



	set_output(*[, transform])

	Set output container.



	set_params(**params)

	Set the parameters of this estimator.



	to_hdf5(path)

	Save model to a HDF5 file.



	to_json(path)

	Save model to a JSON file.



	to_pickle(path)

	Save model to a pickle file.



	transform(X[, y])

	Transform a dataset of time series into its SAX representation.







	
distance(ts1, ts2)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L454-L476]

	Compute distance between SAX representations as defined in [1].


	Parameters:

	
	ts1array-like
	A time series



	ts2array-like
	Another time series







	Returns:

	
	float
	SAX distance









References



[1]
(1,2)
J. Lin, E. Keogh, L. Wei, et al. Experiencing SAX: a novel
symbolic representation of time series. Data Mining and Knowledge
Discovery, 2007. vol. 15(107)










	
distance_paa(paa1, paa2)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L191-L213]

	Compute distance between PAA representations as defined in [1].


	Parameters:

	
	paa1array-like
	PAA representation of a time series



	paa2array-like
	PAA representation of another time series







	Returns:

	
	float
	PAA distance









References



[1]
(1,2)
E. Keogh & M. Pazzani. Scaling up dynamic time warping for
datamining applications. SIGKDD 2000, pp. 285–289.










	
distance_sax(sax1, sax2)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L429-L452]

	Compute distance between SAX representations as defined in [1].


	Parameters:

	
	sax1array-like
	SAX representation of a time series



	sax2array-like
	SAX representation of another time series







	Returns:

	
	float
	SAX distance









References



[1]
(1,2)
J. Lin, E. Keogh, L. Wei, et al. Experiencing SAX: a novel
symbolic representation of time series.
Data Mining and Knowledge Discovery, 2007. vol. 15(107)










	
fit(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L353-L368]

	Fit a SAX representation.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	SymbolicAggregateApproximation
	self














	
fit_transform(X, y=None, **fit_params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L370-L385]

	Fit a SAX representation and transform the data accordingly.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	numpy.ndarray of integers with shape (n_ts, n_segments, d)
	SAX-Transformed dataset














	
classmethod from_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L185-L211]

	Load model from a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L226-L259]

	Load model from a JSON file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L274-L290]

	Load model from a pickle file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
inverse_transform(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/piecewise/piecewise.py#L478-L501]

	Compute time series corresponding to given SAX representations.


	Parameters:

	
	Xarray-like of shape (n_ts, sz_sax, d)
	A dataset of SAX series.







	Returns:

	
	numpy.ndarray of shape (n_ts, sz_original_ts, d)
	A dataset of time series corresponding to the provided
representation.














	
set_output(*, transform=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L230-L258]

	Set output container.

See Introducing the set_output API [https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py]
for an example on how to use the API.


	Parameters:

	
	transform{“default”, “pandas”}, default=None
	Configure output of transform and fit_transform.


	“default”: Default output format of a transformer


	“pandas”: DataFrame output


	None: Transform configuration is unchanged










	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
to_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L164-L183]

	Save model to a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full file path. File must not already exist.







	Raises:

	
	FileExistsError
	If a file with the same path already exists.














	
to_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L213-L224]

	Save model to a JSON file.


	Parameters:

	
	pathstr
	Full file path.














	
to_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L261-L272]

	Save model to a pickle file.


	Parameters:

	
	pathstr
	Full file path.














	
transform(X, y=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L410-L427]

	Transform a dataset of time series into its SAX representation.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset







	Returns:

	
	numpy.ndarray of integers with shape (n_ts, n_segments, d)
	SAX-Transformed dataset


















Examples using tslearn.piecewise.SymbolicAggregateApproximation

[image: ]PAA and SAX features

  PAA and SAX features
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tslearn.preprocessing

The tslearn.preprocessing module gathers time series scalers and 
resamplers.

Classes



	TimeSeriesScalerMeanVariance([mu, std])

	Scaler for time series.



	TimeSeriesScalerMinMax([value_range])

	Scaler for time series.



	TimeSeriesResampler(sz)

	Resampler for time series.
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tslearn.preprocessing.TimeSeriesScalerMeanVariance


	
class tslearn.preprocessing.TimeSeriesScalerMeanVariance(mu=0.0, std=1.0)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/preprocessing/preprocessing.py#L204-L298]

	Scaler for time series. Scales time series so that their mean (resp.
standard deviation) in each dimension is
mu (resp. std).


	Parameters:

	
	mufloat (default: 0.)
	Mean of the output time series.



	stdfloat (default: 1.)
	Standard deviation of the output time series.









Notes

This method requires a dataset of equal-sized time series.

NaNs within a time series are ignored when calculating mu and std.

Examples

>>> TimeSeriesScalerMeanVariance(mu=0.,
...                              std=1.).fit_transform([[0, 3, 6]])
array([[[-1.22474487],
        [ 0.        ],
        [ 1.22474487]]])
>>> TimeSeriesScalerMeanVariance(mu=0.,
...                              std=1.).fit_transform([[numpy.nan, 3, 6]])
array([[[nan],
        [-1.],
        [ 1.]]])





Methods



	fit(X[, y])

	A dummy method such that it complies to the sklearn requirements.



	fit_transform(X[, y])

	Fit to data, then transform it.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	set_output(*[, transform])

	Set output container.



	set_params(**params)

	Set the parameters of this estimator.



	transform(X[, y])

	Fit to data, then transform it.







	
fit(X, y=None, **kwargs)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/preprocessing/preprocessing.py#L239-L255]

	A dummy method such that it complies to the sklearn requirements.
Since this method is completely stateless, it just returns itself.


	Parameters:

	
	X
	Ignored







	Returns:

	
	self
	












	
fit_transform(X, y=None, **kwargs)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L257-L270]

	Fit to data, then transform it.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset to be rescaled.







	Returns:

	
	numpy.ndarray
	Resampled time series dataset.














	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
set_output(*, transform=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L230-L258]

	Set output container.

See Introducing the set_output API [https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py]
for an example on how to use the API.


	Parameters:

	
	transform{“default”, “pandas”}, default=None
	Configure output of transform and fit_transform.


	“default”: Default output format of a transformer


	“pandas”: DataFrame output


	None: Transform configuration is unchanged










	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
transform(X, y=None, **kwargs)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L272-L295]

	Fit to data, then transform it.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset to be rescaled







	Returns:

	
	numpy.ndarray
	Rescaled time series dataset


















Examples using tslearn.preprocessing.TimeSeriesScalerMeanVariance

[image: ]Longest Common Subsequence

  Longest Common Subsequence


[image: ]LB_Keogh

  LB_Keogh


[image: ]sDTW multi path matching

  sDTW multi path matching


[image: ]
Longest Commom Subsequence with a custom distance metric

  Longest Commom Subsequence with a custom distance metric


[image: ]DTW computation with a custom distance metric

  DTW computation with a custom distance metric


[image: ]
1-NN with SAX + MINDIST

  1-NN with SAX + MINDIST


[image: ]KShape

  KShape


[image: ]Kernel k-means

  Kernel k-means


[image: ]k-means

  k-means


[image: ]Early Classification

  Early Classification


[image: ]Model Persistence

  Model Persistence


[image: ]PAA and SAX features

  PAA and SAX features


[image: ]Distance and Matrix Profiles

  Distance and Matrix Profiles
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tslearn.preprocessing.TimeSeriesScalerMinMax


	
class tslearn.preprocessing.TimeSeriesScalerMinMax(value_range=(0.0, 1.0))[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/preprocessing/preprocessing.py#L103-L201]

	Scaler for time series. Scales time series so that their span in each
dimension is between min and max where value_range=(min, max).


	Parameters:

	
	value_rangetuple (default: (0., 1.))
	The minimum and maximum value for the output time series.









Notes

This method requires a dataset of equal-sized time series.

NaNs within a time series are ignored when calculating min and max.

Examples

>>> TimeSeriesScalerMinMax(value_range=(1., 2.)).fit_transform([[0, 3, 6]])
array([[[1. ],
        [1.5],
        [2. ]]])
>>> TimeSeriesScalerMinMax(value_range=(1., 2.)).fit_transform(
...     [[numpy.nan, 3, 6]]
... )
array([[[nan],
        [ 1.],
        [ 2.]]])





Methods



	fit(X[, y])

	A dummy method such that it complies to the sklearn requirements.



	fit_transform(X[, y])

	Fit to data, then transform it.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	set_output(*[, transform])

	Set output container.



	set_params(**params)

	Set the parameters of this estimator.



	transform(X[, y])

	Will normalize (min-max) each of the timeseries.







	
fit(X, y=None, **kwargs)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/preprocessing/preprocessing.py#L134-L150]

	A dummy method such that it complies to the sklearn requirements.
Since this method is completely stateless, it just returns itself.


	Parameters:

	
	X
	Ignored







	Returns:

	
	self
	












	
fit_transform(X, y=None, **kwargs)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L152-L165]

	Fit to data, then transform it.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset to be rescaled.







	Returns:

	
	numpy.ndarray
	Resampled time series dataset.














	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
set_output(*, transform=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L230-L258]

	Set output container.

See Introducing the set_output API [https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py]
for an example on how to use the API.


	Parameters:

	
	transform{“default”, “pandas”}, default=None
	Configure output of transform and fit_transform.


	“default”: Default output format of a transformer


	“pandas”: DataFrame output


	None: Transform configuration is unchanged










	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
transform(X, y=None, **kwargs)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L167-L198]

	Will normalize (min-max) each of the timeseries. IMPORTANT: this
transformation is completely stateless, and is applied to each of
the timeseries individually.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset to be rescaled.







	Returns:

	
	numpy.ndarray
	Rescaled time series dataset.


















Examples using tslearn.preprocessing.TimeSeriesScalerMinMax

[image: ]
Nearest neighbors

  Nearest neighbors


[image: ]Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier

  Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier


[image: ]Soft-DTW weighted barycenters

  Soft-DTW weighted barycenters


[image: ]SVM and GAK

  SVM and GAK


[image: ]Learning Shapelets

  Learning Shapelets


[image: ]Aligning discovered shapelets with timeseries

  Aligning discovered shapelets with timeseries


[image: ]Learning Shapelets: decision boundaries in 2D distance space

  Learning Shapelets: decision boundaries in 2D distance space
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tslearn.preprocessing.TimeSeriesResampler


	
class tslearn.preprocessing.TimeSeriesResampler(sz)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/preprocessing/preprocessing.py#L15-L100]

	Resampler for time series. Resample time series so that they reach the
target size.


	Parameters:

	
	szint
	Size of the output time series.









Examples

>>> TimeSeriesResampler(sz=5).fit_transform([[0, 3, 6]])
array([[[0. ],
        [1.5],
        [3. ],
        [4.5],
        [6. ]]])





Methods



	fit(X[, y])

	A dummy method such that it complies to the sklearn requirements.



	fit_transform(X[, y])

	Fit to data, then transform it.



	set_output(*[, transform])

	Set output container.



	transform(X[, y])

	Fit to data, then transform it.







	
fit(X, y=None, **kwargs)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/preprocessing/preprocessing.py#L36-L49]

	A dummy method such that it complies to the sklearn requirements.
Since this method is completely stateless, it just returns itself.


	Parameters:

	
	X
	Ignored







	Returns:

	
	self
	












	
fit_transform(X, y=None, **kwargs)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L58-L71]

	Fit to data, then transform it.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset to be resampled.







	Returns:

	
	numpy.ndarray
	Resampled time series dataset.














	
set_output(*, transform=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L230-L258]

	Set output container.

See Introducing the set_output API [https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py]
for an example on how to use the API.


	Parameters:

	
	transform{“default”, “pandas”}, default=None
	Configure output of transform and fit_transform.


	“default”: Default output format of a transformer


	“pandas”: DataFrame output


	None: Transform configuration is unchanged










	Returns:

	
	selfestimator instance
	Estimator instance.














	
transform(X, y=None, **kwargs)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L73-L100]

	Fit to data, then transform it.


	Parameters:

	
	Xarray-like of shape (n_ts, sz, d)
	Time series dataset to be resampled.







	Returns:

	
	numpy.ndarray
	Resampled time series dataset.


















Examples using tslearn.preprocessing.TimeSeriesResampler

[image: ]k-means

  k-means
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tslearn.shapelets

The tslearn.shapelets module gathers Shapelet-based algorithms.

It depends on the tensorflow library for optimization (TF2 is required).

User guide: See the Shapelets section for further 
details.

Functions



	grabocka_params_to_shapelet_size_dict(n_ts, ...)

	Compute number and length of shapelets.






Classes



	LearningShapelets([n_shapelets_per_size, ...])

	Learning Time-Series Shapelets model.
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tslearn.shapelets.grabocka_params_to_shapelet_size_dict


	
tslearn.shapelets.grabocka_params_to_shapelet_size_dict(n_ts, ts_sz, n_classes, l, r)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/shapelets/shapelets.py#L158-L209]

	Compute number and length of shapelets.


This function uses the heuristic from [1].





	Parameters:

	
	n_ts: int
	Number of time series in the dataset



	ts_sz: int
	Length of time series in the dataset



	n_classes: int
	Number of classes in the dataset



	l: float
	Fraction of the length of time series to be used for base shapelet
length



	r: int
	Number of different shapelet lengths to use







	Returns:

	
	dict
	Dictionary giving, for each shapelet length, the number of such
shapelets to be generated









References



[1]

	Grabocka et al. Learning Time-Series Shapelets. SIGKDD 2014.








Examples

>>> d = grabocka_params_to_shapelet_size_dict(
...         n_ts=100, ts_sz=100, n_classes=3, l=0.1, r=2)
>>> keys = sorted(d.keys())
>>> print(keys)
[10, 20]
>>> print([d[k] for k in keys])
[4, 4]










Examples using tslearn.shapelets.grabocka_params_to_shapelet_size_dict

[image: ]Learning Shapelets

  Learning Shapelets
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tslearn.shapelets.LearningShapelets


	
class tslearn.shapelets.LearningShapelets(n_shapelets_per_size=None, max_iter=10000, batch_size=256, verbose=0, optimizer='sgd', weight_regularizer=0.0, shapelet_length=0.15, total_lengths=3, max_size=None, scale=False, random_state=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/shapelets/shapelets.py#L212-L895]

	Learning Time-Series Shapelets model.

Learning Time-Series Shapelets was originally presented in [1].

From an input (possibly multidimensional) time series \(x\) and a set
of shapelets \(\{s_i\}_i\), the \(i\)-th coordinate of the Shapelet
transform is computed as:


\[ST(x, s_i) = \min_t \sum_{\delta_t}
    \left\|x(t+\delta_t) - s_i(\delta_t)\right\|_2^2\]

The Shapelet model consists in a logistic regression layer on top of this
transform. Shapelet coefficients as well as logistic regression weights are
optimized by gradient descent on a L2-penalized cross-entropy loss.


	Parameters:

	
	n_shapelets_per_size: dict (default: None)
	Dictionary giving, for each shapelet size (key),
the number of such shapelets to be trained (value). 
If None, grabocka_params_to_shapelet_size_dict is used and the
size used to compute is that of the shortest time series passed at fit 
time.



	max_iter: int (default: 10,000)
	Number of training epochs.


Changed in version 0.3: default value for max_iter is set to 10,000 instead of 100





	batch_size: int (default: 256)
	Batch size to be used.



	verbose: {0, 1, 2} (default: 0)
	keras verbose level.



	optimizer: str or keras.optimizers.Optimizer (default: “sgd”)
	keras optimizer to use for training.



	weight_regularizer: float or None (default: 0.)
	Strength of the L2 regularizer to use for training the classification
(softmax) layer. If 0, no regularization is performed.



	shapelet_length: float (default: 0.15)
	The length of the shapelets, expressed as a fraction of the time 
series length.
Used only if n_shapelets_per_size is None.



	total_lengths: int (default: 3)
	The number of different shapelet lengths. Will extract shapelets of
length i * shapelet_length for i in [1, total_lengths]
Used only if n_shapelets_per_size is None.



	max_size: int or None (default: None)
	Maximum size for time series to be fed to the model. If None, it is 
set to the size (number of timestamps) of the training time series.



	scale: bool (default: False)
	Whether input data should be scaled for each feature of each time 
series to lie in the [0-1] interval.
Default for this parameter is set to False in version 0.4 to ensure
backward compatibility, but is likely to change in a future version.



	random_stateint or None, optional (default: None)
	The seed of the pseudo random number generator to use when shuffling
the data.  If int, random_state is the seed used by the random number
generator; If None, the random number generator is the RandomState
instance used by np.random.







	Attributes:

	
	shapelets_numpy.ndarray of objects, each object being a time series
	Set of time-series shapelets.



	shapelets_as_time_series_numpy.ndarray of shape (n_shapelets, sz_shp, d) where sz_shp is the maximum of all shapelet sizes
	Set of time-series shapelets formatted as a tslearn time series dataset.



	transformer_model_keras.Model
	Transforms an input dataset of timeseries into distances to the
learned shapelets.



	locator_model_keras.Model
	Returns the indices where each of the shapelets can be found (minimal
distance) within each of the timeseries of the input dataset.



	model_keras.Model
	Directly predicts the class probabilities for the input timeseries.



	history_dict
	Dictionary of losses and metrics recorded during fit.









References



[1]

	Grabocka et al. Learning Time-Series Shapelets. SIGKDD 2014.








Examples

>>> from tslearn.generators import random_walk_blobs
>>> X, y = random_walk_blobs(n_ts_per_blob=10, sz=16, d=2, n_blobs=3)
>>> clf = LearningShapelets(n_shapelets_per_size={4: 5}, 
...                         max_iter=1, verbose=0)
>>> clf.fit(X, y).shapelets_.shape
(5,)
>>> clf.shapelets_[0].shape
(4, 2)
>>> clf.predict(X).shape
(30,)
>>> clf.predict_proba(X).shape
(30, 3)
>>> clf.transform(X).shape
(30, 5)





Methods



	fit(X, y)

	Learn time-series shapelets.



	fit_transform(X[, y])

	Fit to data, then transform it.



	from_hdf5(path)

	Load model from a HDF5 file.



	from_json(path)

	Load model from a JSON file.



	from_pickle(path)

	Load model from a pickle file.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	get_weights([layer_name])

	Return model weights (or weights for a given layer if layer_name is provided).



	locate(X)

	Compute shapelet match location for a set of time series.



	predict(X)

	Predict class for a given set of time series.



	predict_proba(X)

	Predict class probability for a given set of time series.



	score(X, y[, sample_weight])

	Return the mean accuracy on the given test data and labels.



	set_output(*[, transform])

	Set output container.



	set_params(**params)

	Set the parameters of this estimator.



	set_score_request(*[, sample_weight])

	Request metadata passed to the score method.



	set_weights(weights[, layer_name])

	Set model weights (or weights for a given layer if layer_name is provided).



	to_hdf5(path)

	Save model to a HDF5 file.



	to_json(path)

	Save model to a JSON file.



	to_pickle(path)

	Save model to a pickle file.



	transform(X)

	Generate shapelet transform for a set of time series.







	
fit(X, y)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/shapelets/shapelets.py#L413-L461]

	Learn time-series shapelets.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.



	yarray-like of shape=(n_ts, )
	Time series labels.














	
fit_transform(X, y=None, **fit_params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L888-L919]

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters:

	
	Xarray-like of shape (n_samples, n_features)
	Input samples.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs),                 default=None
	Target values (None for unsupervised transformations).



	**fit_paramsdict
	Additional fit parameters.







	Returns:

	
	X_newndarray array of shape (n_samples, n_features_new)
	Transformed array.














	
classmethod from_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L185-L211]

	Load model from a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L226-L259]

	Load model from a JSON file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
classmethod from_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L274-L290]

	Load model from a pickle file.


	Parameters:

	
	pathstr
	Full path to file.







	Returns:

	
	Model instance
	












	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
get_weights(layer_name=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/shapelets/shapelets.py#L759-L795]

	Return model weights (or weights for a given layer if layer_name
is provided).


	Parameters:

	
	layer_name: str or None (default: None)
	Name of the layer for which  weights should be returned.
If None, all model weights are returned.
Available layer names with weights are:


	“shapelets_i_j” with i an integer for the shapelet id and j an
integer for the dimension


	“classification” for the final classification layer










	Returns:

	
	list
	list of model (or layer) weights









Examples

>>> from tslearn.generators import random_walk_blobs
>>> X, y = random_walk_blobs(n_ts_per_blob=100, sz=256, d=1, n_blobs=3)
>>> clf = LearningShapelets(n_shapelets_per_size={10: 5}, max_iter=0,
...                     verbose=0)
>>> clf.fit(X, y).get_weights("classification")[0].shape
(5, 3)
>>> clf.get_weights("shapelets_0_0")[0].shape
(5, 10)
>>> len(clf.get_weights("shapelets_0_0"))
1










	
locate(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/shapelets/shapelets.py#L550-L594]

	Compute shapelet match location for a set of time series.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.







	Returns:

	
	array of shape=(n_ts, n_shapelets)
	Location of the shapelet matches for the provided time series.









Examples

>>> from tslearn.generators import random_walk_blobs
>>> X = numpy.zeros((3, 10, 1))
>>> X[0, 4:7, 0] = numpy.array([1, 2, 3])
>>> y = [1, 0, 0]
>>> # Data is all zeros except a motif 1-2-3 in the first time series
>>> clf = LearningShapelets(n_shapelets_per_size={3: 1}, max_iter=0,
...                     verbose=0)
>>> _ = clf.fit(X, y)
>>> weights_shapelet = [
...     numpy.array([[1, 2, 3]])
... ]
>>> clf.set_weights(weights_shapelet, layer_name="shapelets_0_0")
>>> clf.locate(X)
array([[4],
       [0],
       [0]])










	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/shapelets/shapelets.py#L463-L489]

	Predict class for a given set of time series.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.







	Returns:

	
	array of shape=(n_ts, ) or (n_ts, n_classes), depending on the shape
	

	of the label vector provided at training time.
	Index of the cluster each sample belongs to or class probability
matrix, depending on what was provided at training time.














	
predict_proba(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/shapelets/shapelets.py#L491-L521]

	Predict class probability for a given set of time series.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.







	Returns:

	
	array of shape=(n_ts, n_classes),
	Class probability matrix.














	
score(X, y, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L680-L706]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters:

	
	Xarray-like of shape (n_samples, n_features)
	Test samples.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True labels for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns:

	
	scorefloat
	Mean accuracy of self.predict(X) w.r.t. y.














	
set_output(*, transform=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_available_if.py#L230-L258]

	Set output container.

See Introducing the set_output API [https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py]
for an example on how to use the API.


	Parameters:

	
	transform{“default”, “pandas”}, default=None
	Configure output of transform and fit_transform.


	“default”: Default output format of a transformer


	“pandas”: DataFrame output


	None: Transform configuration is unchanged










	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_score_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → LearningShapelets[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the score method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to score.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in score.







	Returns:

	
	selfobject
	The updated object.














	
set_weights(weights, layer_name=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/shapelets/shapelets.py#L797-L834]

	Set model weights (or weights for a given layer if layer_name
is provided).


	Parameters:

	
	weights: list of ndarrays
	Weights to set for the model / target layer



	layer_name: str or None (default: None)
	Name of the layer for which  weights should be set.
If None, all model weights are set.
Available layer names with weights are:


	“shapelets_i_j” with i an integer for the shapelet id and j an
integer for the dimension


	“classification” for the final classification layer












Examples

>>> from tslearn.generators import random_walk_blobs
>>> X, y = random_walk_blobs(n_ts_per_blob=10, sz=16, d=1, n_blobs=3)
>>> clf = LearningShapelets(n_shapelets_per_size={3: 1}, max_iter=0,
...                     verbose=0)
>>> _ = clf.fit(X, y)
>>> weights_shapelet = [
...     numpy.array([[1, 2, 3]])
... ]
>>> clf.set_weights(weights_shapelet, layer_name="shapelets_0_0")
>>> clf.shapelets_as_time_series_
array([[[1.],
        [2.],
        [3.]]])










	
property shapelets_as_time_series_[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/shapelets.py]

	Set of time-series shapelets formatted as a tslearn time series
dataset.

Examples

>>> from tslearn.generators import random_walk_blobs
>>> X, y = random_walk_blobs(n_ts_per_blob=10, sz=256, d=1, n_blobs=3)
>>> model = LearningShapelets(n_shapelets_per_size={3: 2, 4: 1},
...                       max_iter=1)
>>> _ = model.fit(X, y)
>>> model.shapelets_as_time_series_.shape
(3, 4, 1)










	
to_hdf5(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L164-L183]

	Save model to a HDF5 file.
Requires h5py http://docs.h5py.org/


	Parameters:

	
	pathstr
	Full file path. File must not already exist.







	Raises:

	
	FileExistsError
	If a file with the same path already exists.














	
to_json(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L213-L224]

	Save model to a JSON file.


	Parameters:

	
	pathstr
	Full file path.














	
to_pickle(path)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/bases/bases.py#L261-L272]

	Save model to a pickle file.


	Parameters:

	
	pathstr
	Full file path.














	
transform(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_set_output.py#L523-L548]

	Generate shapelet transform for a set of time series.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.







	Returns:

	
	array of shape=(n_ts, n_shapelets)
	Shapelet-Transform of the provided time series.


















Examples using tslearn.shapelets.LearningShapelets
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  Learning Shapelets: decision boundaries in 2D distance space
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tslearn.svm

The tslearn.svm module contains Support Vector Classifier (SVC) and
Support Vector Regressor (SVR) models for time series.

Classes



	TimeSeriesSVC([C, kernel, degree, gamma, ...])

	Time-series specific Support Vector Classifier.



	TimeSeriesSVR([C, kernel, degree, gamma, ...])

	Time-series specific Support Vector Regressor.
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tslearn.svm.TimeSeriesSVC


	
class tslearn.svm.TimeSeriesSVC(C=1.0, kernel='gak', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, n_jobs=None, verbose=0, max_iter=-1, decision_function_shape='ovr', random_state=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/svm/svm.py#L68-L364]

	Time-series specific Support Vector Classifier.


	Parameters:

	
	Cfloat, optional (default=1.0)
	Penalty parameter C of the error term.



	kernelstring, optional (default=’gak’)
	Specifies the kernel type to be used in the algorithm.
It must be one of ‘gak’ or a kernel accepted by sklearn.svm.SVC.
If none is given, ‘gak’ will be used. If a callable is given it is
used to pre-compute the kernel matrix from data matrices; that matrix
should be an array of shape (n_samples, n_samples).



	degreeint, optional (default=3)
	Degree of the polynomial kernel function (‘poly’).
Ignored by all other kernels.



	gammafloat, optional (default=’auto’)
	Kernel coefficient for ‘gak’, ‘rbf’, ‘poly’ and ‘sigmoid’.
If gamma is ‘auto’ then:


	for ‘gak’ kernel, it is computed based on a sampling of the training
set (cf tslearn.metrics.gamma_soft_dtw)


	for other kernels (eg. ‘rbf’), 1/n_features will be used.






	coef0float, optional (default=0.0)
	Independent term in kernel function.
It is only significant in ‘poly’ and ‘sigmoid’.



	shrinkingboolean, optional (default=True)
	Whether to use the shrinking heuristic.



	probabilityboolean, optional (default=False)
	Whether to enable probability estimates. This must be enabled prior
to calling fit, and will slow down that method.
Also, probability estimates are not guaranteed to match predict output.
See our dedicated user guide section
for more details.



	tolfloat, optional (default=1e-3)
	Tolerance for stopping criterion.



	cache_sizefloat, optional (default=200.0)
	Specify the size of the kernel cache (in MB).



	class_weight{dict, ‘balanced’}, optional
	Set the parameter C of class i to class_weight[i]*C for
SVC. If not given, all classes are supposed to have
weight one.
The “balanced” mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as n_samples / (n_classes * np.bincount(y))



	n_jobsint or None, optional (default=None)
	The number of jobs to run in parallel for GAK cross-similarity matrix
computations.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learns’
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.



	verboseint, default: 0
	Enable verbose output. Note that this setting takes advantage of a
per-process runtime setting in libsvm that, if enabled, may not work
properly in a multithreaded context.



	max_iterint, optional (default=-1)
	Hard limit on iterations within solver, or -1 for no limit.



	decision_function_shape‘ovo’, ‘ovr’, default=’ovr’
	Whether to return a one-vs-rest (‘ovr’) decision function of shape
(n_samples, n_classes) as all other classifiers, or the original
one-vs-one (‘ovo’) decision function of libsvm which has shape
(n_samples, n_classes * (n_classes - 1) / 2).



	random_stateint, RandomState instance or None, optional (default=None)
	The seed of the pseudo random number generator to use when shuffling
the data.  If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState
instance used by np.random.







	Attributes:

	
	support_array-like, shape = [n_SV]
	Indices of support vectors.



	n_support_array-like, dtype=int32, shape = [n_class]
	Number of support vectors for each class.



	support_vectors_list of arrays of shape [n_SV, sz, d]
	List of support vectors in tslearn dataset format, one array per class



	dual_coef_array, shape = [n_class-1, n_SV]
	Coefficients of the support vector in the decision function.
For multiclass, coefficient for all 1-vs-1 classifiers.
The layout of the coefficients in the multiclass case is somewhat
non-trivial. See the section about multi-class classification in the
SVM section of the User Guide of sklearn for details.



	coef_array, shape = [n_class-1, n_features]
	Weights assigned to the features (coefficients in the primal
problem). This is only available in the case of a linear kernel.
coef_ is a readonly property derived from dual_coef_ and
support_vectors_.



	intercept_array, shape = [n_class * (n_class-1) / 2]
	Constants in decision function.



	svm_estimator_sklearn.svm.SVC
	The underlying sklearn estimator









References
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Examples

>>> from tslearn.generators import random_walk_blobs
>>> X, y = random_walk_blobs(n_ts_per_blob=10, sz=64, d=2, n_blobs=2)
>>> clf = TimeSeriesSVC(kernel="gak", gamma="auto", probability=True)
>>> clf.fit(X, y).predict(X).shape
(20,)
>>> sv = clf.support_vectors_
>>> len(sv)  # should be equal to the nr of classes in the clf problem
2
>>> sv[0].shape  
(..., 64, 2)
>>> sv_sum = sum([sv_i.shape[0] for sv_i in sv])
>>> sv_sum == clf.svm_estimator_.n_support_.sum()
True
>>> clf.decision_function(X).shape
(20,)
>>> clf.predict_log_proba(X).shape
(20, 2)
>>> clf.predict_proba(X).shape
(20, 2)





Methods



	decision_function(X)

	Evaluates the decision function for the samples in X.



	fit(X, y[, sample_weight])

	Fit the SVM model according to the given training data.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	predict(X)

	Predict class for a given set of time series.



	predict_log_proba(X)

	Predict class log-probabilities for a given set of time series.



	predict_proba(X)

	Predict class probability for a given set of time series.



	score(X, y[, sample_weight])

	Return the mean accuracy on the given test data and labels.



	set_fit_request(*[, sample_weight])

	Request metadata passed to the fit method.



	set_params(**params)

	Set the parameters of this estimator.



	set_score_request(*[, sample_weight])

	Request metadata passed to the score method.







	
decision_function(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/svm/svm.py#L297-L313]

	Evaluates the decision function for the samples in X.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.







	Returns:

	
	ndarray of shape (n_samples, n_classes * (n_classes-1) / 2)
	Returns the decision function of the sample for each class
in the model.
If decision_function_shape=’ovr’, the shape is (n_samples,
n_classes).














	
fit(X, y, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/svm/svm.py#L249-L277]

	Fit the SVM model according to the given training data.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.



	yarray-like of shape=(n_ts, )
	Time series labels.



	sample_weightarray-like of shape (n_samples,), default=None
	Per-sample weights. Rescale C per sample. Higher weights force the 
classifier to put more emphasis on these points.














	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/svm/svm.py#L279-L295]

	Predict class for a given set of time series.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.







	Returns:

	
	array of shape=(n_ts, ) or (n_ts, n_classes), depending on the shape
	

	of the label vector provided at training time.
	Index of the cluster each sample belongs to or class probability
matrix, depending on what was provided at training time.














	
predict_log_proba(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/svm/svm.py#L315-L334]

	Predict class log-probabilities for a given set of time series.

Note that probability estimates are not guaranteed to match predict 
output.
See our dedicated user guide section
for more details.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.







	Returns:

	
	array of shape=(n_ts, n_classes),
	Class probability matrix.














	
predict_proba(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/svm/svm.py#L336-L355]

	Predict class probability for a given set of time series.

Note that probability estimates are not guaranteed to match predict 
output.
See our dedicated user guide section
for more details.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.







	Returns:

	
	array of shape=(n_ts, n_classes),
	Class probability matrix.














	
score(X, y, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L680-L706]

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters:

	
	Xarray-like of shape (n_samples, n_features)
	Test samples.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True labels for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns:

	
	scorefloat
	Mean accuracy of self.predict(X) w.r.t. y.














	
set_fit_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → TimeSeriesSVC[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the fit method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to fit.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in fit.







	Returns:

	
	selfobject
	The updated object.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_score_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → TimeSeriesSVC[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the score method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to score.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in score.







	Returns:

	
	selfobject
	The updated object.


















Examples using tslearn.svm.TimeSeriesSVC
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tslearn.svm.TimeSeriesSVR


	
class tslearn.svm.TimeSeriesSVR(C=1.0, kernel='gak', degree=3, gamma='auto', coef0=0.0, tol=0.001, epsilon=0.1, shrinking=True, cache_size=200, n_jobs=None, verbose=0, max_iter=-1)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/svm/svm.py#L367-L555]

	Time-series specific Support Vector Regressor.


	Parameters:

	
	Cfloat, optional (default=1.0)
	Penalty parameter C of the error term.



	kernelstring, optional (default=’gak’)
	Specifies the kernel type to be used in the algorithm.
It must be one of ‘gak’ or a kernel accepted by sklearn.svm.SVC.
If none is given, ‘gak’ will be used. If a callable is given it is
used to pre-compute the kernel matrix from data matrices; that matrix
should be an array of shape (n_samples, n_samples).



	degreeint, optional (default=3)
	Degree of the polynomial kernel function (‘poly’).
Ignored by all other kernels.



	gammafloat, optional (default=’auto’)
	Kernel coefficient for ‘gak’, ‘rbf’, ‘poly’ and ‘sigmoid’.
If gamma is ‘auto’ then:


	for ‘gak’ kernel, it is computed based on a sampling of the training
set (cf tslearn.metrics.gamma_soft_dtw)


	for other kernels (eg. ‘rbf’), 1/n_features will be used.






	coef0float, optional (default=0.0)
	Independent term in kernel function.
It is only significant in ‘poly’ and ‘sigmoid’.



	tolfloat, optional (default=1e-3)
	Tolerance for stopping criterion.



	epsilonfloat, optional (default=0.1)
	Epsilon in the epsilon-SVR model. It specifies the epsilon-tube
within which no penalty is associated in the training loss function
with points predicted within a distance epsilon from the actual
value.



	shrinkingboolean, optional (default=True)
	Whether to use the shrinking heuristic.



	cache_sizefloat, optional (default=200.0)
	Specify the size of the kernel cache (in MB).



	n_jobsint or None, optional (default=None)
	The number of jobs to run in parallel for GAK cross-similarity matrix
computations.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learns’
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.



	verboseint, default: 0
	Enable verbose output. Note that this setting takes advantage of a
per-process runtime setting in libsvm that, if enabled, may not work
properly in a multithreaded context.



	max_iterint, optional (default=-1)
	Hard limit on iterations within solver, or -1 for no limit.







	Attributes:

	
	support_array-like, shape = [n_SV]
	Indices of support vectors.



	support_vectors_array of shape [n_SV, sz, d]
	Support vectors in tslearn dataset format



	dual_coef_array, shape = [1, n_SV]
	Coefficients of the support vector in the decision function.



	coef_array, shape = [1, n_features]
	Weights assigned to the features (coefficients in the primal
problem). This is only available in the case of a linear kernel.
coef_ is readonly property derived from dual_coef_ and
support_vectors_.



	intercept_array, shape = [1]
	Constants in decision function.



	sample_weightarray-like, shape = [n_samples]
	Individual weights for each sample



	svm_estimator_sklearn.svm.SVR
	The underlying sklearn estimator









References

Fast Global Alignment Kernels.
Marco Cuturi.
ICML 2011.

Examples

>>> from tslearn.generators import random_walk_blobs
>>> X, y = random_walk_blobs(n_ts_per_blob=10, sz=64, d=2, n_blobs=2)
>>> import numpy
>>> y = y.astype(float) + numpy.random.randn(20) * .1
>>> reg = TimeSeriesSVR(kernel="gak", gamma="auto")
>>> reg.fit(X, y).predict(X).shape
(20,)
>>> sv = reg.support_vectors_
>>> sv.shape  
(..., 64, 2)
>>> sv.shape[0] <= 20
True





Methods



	fit(X, y[, sample_weight])

	Fit the SVM model according to the given training data.



	get_metadata_routing()

	Get metadata routing of this object.



	get_params([deep])

	Get parameters for this estimator.



	predict(X)

	Predict class for a given set of time series.



	score(X, y[, sample_weight])

	Return the coefficient of determination of the prediction.



	set_fit_request(*[, sample_weight])

	Request metadata passed to the fit method.



	set_params(**params)

	Set the parameters of this estimator.



	set_score_request(*[, sample_weight])

	Request metadata passed to the score method.







	
fit(X, y, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/svm/svm.py#L505-L529]

	Fit the SVM model according to the given training data.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.



	yarray-like of shape=(n_ts, )
	Time series labels.



	sample_weightarray-like of shape (n_samples,), default=None
	Per-sample weights. Rescale C per sample. Higher weights force the 
classifier to put more emphasis on these points.














	
get_metadata_routing()[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1243-L1255]

	Get metadata routing of this object.

Please check User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.


	Returns:

	
	routingMetadataRequest
	A MetadataRequest [https://scikit-learn.org/stable/modules/generated/sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest] encapsulating
routing information.














	
get_params(deep=True)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L178-L200]

	Get parameters for this estimator.


	Parameters:

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns:

	
	paramsdict
	Parameter names mapped to their values.














	
predict(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/svm/svm.py#L531-L546]

	Predict class for a given set of time series.


	Parameters:

	
	Xarray-like of shape=(n_ts, sz, d)
	Time series dataset.







	Returns:

	
	array of shape=(n_ts, ) or (n_ts, dim_output), depending on the shape
	

	of the target vector provided at training time.
	Predicted targets














	
score(X, y, sample_weight=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L717-L761]

	Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as
\((1 - \frac{u}{v})\), where \(u\) is the residual
sum of squares ((y_true - y_pred)** 2).sum() and \(v\)
is the total sum of squares ((y_true - y_true.mean()) ** 2).sum().
The best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always predicts
the expected value of y, disregarding the input features, would get
a \(R^2\) score of 0.0.


	Parameters:

	
	Xarray-like of shape (n_samples, n_features)
	Test samples. For some estimators this may be a precomputed
kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted), where n_samples_fitted
is the number of samples used in the fitting for the estimator.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True values for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns:

	
	scorefloat
	\(R^2\) of self.predict(X) w.r.t. y.









Notes

The \(R^2\) score used when calling score on a regressor uses
multioutput='uniform_average' from version 0.23 to keep consistent
with default value of r2_score() [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score].
This influences the score method of all the multioutput
regressors (except for
MultiOutputRegressor [https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor]).






	
set_fit_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → TimeSeriesSVR[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the fit method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to fit.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in fit.







	Returns:

	
	selfobject
	The updated object.














	
set_params(**params)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/base.py#L202-L265]

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters:

	
	**paramsdict
	Estimator parameters.







	Returns:

	
	selfestimator instance
	Estimator instance.














	
set_score_request(*, sample_weight: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = '$UNCHANGED$') → TimeSeriesSVR[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/../../sklearn/utils/_metadata_requests.py#L1033-L1060]

	Request metadata passed to the score method.

Note that this method is only relevant if
enable_metadata_routing=True (see sklearn.set_config() [https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config]).
Please see User Guide [https://scikit-learn.org/stable/metadata_routing.html#metadata-routing] on how the routing
mechanism works.

The options for each parameter are:


	True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.


	False: metadata is not requested and the meta-estimator will not pass it to score.


	None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.


	str: metadata should be passed to the meta-estimator with this given alias instead of the original name.




The default (sklearn.utils.metadata_routing.UNCHANGED) retains the
existing request. This allows you to change the request for some
parameters and not others.


New in version 1.3.




Note

This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]. Otherwise it has no effect.




	Parameters:

	
	sample_weightstr, True, False, or None,                     default=sklearn.utils.metadata_routing.UNCHANGED
	Metadata routing for sample_weight parameter in score.







	Returns:

	
	selfobject
	The updated object.
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tslearn.utils

The tslearn.utils module includes various utilities.

Generic functions



	to_time_series(ts[, remove_nans, be])

	Transforms a time series so that it fits the format used in tslearn models.



	to_time_series_dataset(dataset[, dtype, be])

	Transforms a time series dataset so that it fits the format used in tslearn models.



	to_sklearn_dataset(dataset[, dtype, return_dim])

	Transforms a time series dataset so that it fits the format used in sklearn estimators.



	ts_size(ts[, be])

	Returns actual time series size.



	ts_zeros(sz[, d])

	Returns a time series made of zero values.



	load_time_series_txt(fname)

	Loads a time series dataset from disk.



	save_time_series_txt(fname, dataset[, fmt])

	Writes a time series dataset to disk.



	check_equal_size(dataset[, be])

	Check if all time series in the dataset have the same size.



	check_dims(X[, X_fit_dims, extend, ...])

	Reshapes X to a 3-dimensional array of X.shape[0] univariate timeseries of length X.shape[1] if X is 2-dimensional and extend is True.






Conversion functions

The following functions are provided for the sake of
interoperability between standard Python packages for time series.
They allow conversion between tslearn format and other libraries’ formats.



	to_pyts_dataset(X)

	Transform a tslearn-compatible dataset into a pyts dataset.



	from_pyts_dataset(X)

	Transform a pyts-compatible dataset into a tslearn dataset.



	to_sktime_dataset(X)

	Transform a tslearn-compatible dataset into a sktime dataset.



	from_sktime_dataset(X)

	Transform a sktime-compatible dataset into a tslearn dataset.



	to_cesium_dataset(X)

	Transform a tslearn-compatible dataset into a cesium dataset.



	from_cesium_dataset(X)

	Transform a cesium-compatible dataset into a tslearn dataset.



	to_seglearn_dataset(X)

	Transform a tslearn-compatible dataset into a seglearn dataset.



	from_seglearn_dataset(X)

	Transform a seglearn-compatible dataset into a tslearn dataset.



	to_tsfresh_dataset(X)

	Transform a tslearn-compatible dataset into a tsfresh dataset.



	from_tsfresh_dataset(X)

	Transform a tsfresh-compatible dataset into a tslearn dataset.



	to_stumpy_dataset(X)

	Transform a tslearn-compatible dataset into a stumpy dataset.



	from_stumpy_dataset(X)

	Transform a stumpy-compatible dataset into a tslearn dataset.



	to_pyflux_dataset(X)

	Transform a tslearn-compatible dataset into a pyflux dataset.



	from_pyflux_dataset(X)

	Transform a pyflux-compatible dataset into a tslearn dataset.
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tslearn.utils.to_time_series


	
tslearn.utils.to_time_series(ts, remove_nans=False, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/utils.py#L115-L166]

	Transforms a time series so that it fits the format used in tslearn
models.


	Parameters:

	
	tsarray-like, shape=(sz, d) or (sz,)
	The time series to be transformed.
If shape is (sz,), the time series is assumed to be univariate.



	remove_nansbool (default: False)
	Whether trailing NaNs at the end of the time series should be removed
or not



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	ts_outarray-like, shape=(sz, d)
	The transformed time series. This is always guaraneteed to be a new
time series and never just a view into the old one.










See also


	to_time_series_dataset
	Transforms a dataset of time series







Examples

>>> to_time_series([1, 2])
array([[1.],
       [2.]])
>>> to_time_series([1, 2, numpy.nan])
array([[ 1.],
       [ 2.],
       [nan]])
>>> to_time_series([1, 2, numpy.nan], remove_nans=True)
array([[1.],
       [2.]])
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tslearn.utils.to_time_series_dataset


	
tslearn.utils.to_time_series_dataset(dataset, dtype=<class 'float'>, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/utils.py#L169-L233]

	Transforms a time series dataset so that it fits the format used in
tslearn models.


	Parameters:

	
	datasetarray-like, shape=(n_ts, sz, d) or (n_ts, sz) or (sz,)
	The dataset of time series to be transformed. A single time series will
be automatically wrapped into a dataset with a single entry.



	dtypedata type (default: float)
	Data type for the returned dataset.







	Returns:

	
	dataset_outarray-like, shape=(n_ts, sz, d)
	The transformed dataset of time series.










See also


	to_time_series
	Transforms a single time series







Examples

>>> to_time_series_dataset([[1, 2]])
array([[[1.],
        [2.]]])
>>> to_time_series_dataset([1, 2])
array([[[1.],
        [2.]]])
>>> to_time_series_dataset([[1, 2], [1, 4, 3]])
array([[[ 1.],
        [ 2.],
        [nan]],

       [[ 1.],
        [ 4.],
        [ 3.]]])
>>> to_time_series_dataset([]).shape
(0, 0, 0)
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tslearn.utils.to_sklearn_dataset


	
tslearn.utils.to_sklearn_dataset(dataset, dtype=<class 'float'>, return_dim=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L15-L55]

	Transforms a time series dataset so that it fits the format used in
sklearn estimators.


	Parameters:

	
	datasetarray-like
	The dataset of time series to be transformed.



	dtypedata type (default: float64)
	Data type for the returned dataset.



	return_dimboolean  (optional, default: False)
	Whether the dimensionality (third dimension should be returned together
with the transformed dataset).







	Returns:

	
	numpy.ndarray of shape (n_ts, sz * d)
	The transformed dataset of time series.



	int (optional, if return_dim=True)
	The dimensionality of the original tslearn dataset (third dimension)










See also


	to_time_series_dataset
	Transforms a time series dataset to tslearn



	format.
	





Examples

>>> to_sklearn_dataset([[1, 2]], return_dim=True)
(array([[1., 2.]]), 1)
>>> to_sklearn_dataset([[1, 2], [1, 4, 3]])
array([[ 1.,  2., nan],
       [ 1.,  4.,  3.]])
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tslearn.utils.ts_size


	
tslearn.utils.ts_size(ts, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/utils.py#L404-L450]

	Returns actual time series size.

Final timesteps that have NaN values for all dimensions will be removed
from the count. Infinity and negative infinity ar considered valid time
series values.


	Parameters:

	
	tsarray-like
	A time series.



	beBackend object or string or None
	Backend. If be is an instance of the class NumPyBackend or the string “numpy”,
the NumPy backend is used.
If be is an instance of the class PyTorchBackend or the string “pytorch”,
the PyTorch backend is used.
If be is None, the backend is determined by the input arrays.
See our dedicated user-guide page for more information.







	Returns:

	
	int
	Actual size of the time series.









Examples

>>> ts_size([1, 2, 3, numpy.nan])
3
>>> ts_size([1, numpy.nan])
1
>>> ts_size([numpy.nan])
0
>>> ts_size([[1, 2],
...          [2, 3],
...          [3, 4],
...          [numpy.nan, 2],
...          [numpy.nan, numpy.nan]])
4
>>> ts_size([numpy.nan, 3, numpy.inf, numpy.nan])
3










Examples using tslearn.utils.ts_size
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tslearn.utils.ts_zeros


	
tslearn.utils.ts_zeros(sz, d=1)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/utils.py#L453-L477]

	Returns a time series made of zero values.


	Parameters:

	
	szint
	Time series size.



	dint (optional, default: 1)
	Time series dimensionality.







	Returns:

	
	numpy.ndarray
	A time series made of zeros.









Examples

>>> ts_zeros(3, 2)  
array([[0., 0.],
       [0., 0.],
       [0., 0.]])
>>> ts_zeros(5).shape
(5, 1)
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tslearn.utils.load_time_series_txt


	
tslearn.utils.load_time_series_txt(fname)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/utils.py#L340-L366]

	Loads a time series dataset from disk.


	Parameters:

	
	fnamestring
	Path to the file from which time series should be read.







	Returns:

	
	numpy.ndarray or array of numpy.ndarray
	The dataset of time series.










See also


	save_time_series_txt
	Save time series to disk







Examples

>>> dataset = to_time_series_dataset([[1, 2, 3, 4], [1, 2, 3]])
>>> save_time_series_txt("tmp-tslearn-test.txt", dataset)
>>> reloaded_dataset = load_time_series_txt("tmp-tslearn-test.txt")
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tslearn.utils.save_time_series_txt


	
tslearn.utils.save_time_series_txt(fname, dataset, fmt='%.18e')[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/utils.py#L311-L334]

	Writes a time series dataset to disk.


	Parameters:

	
	fnamestring
	Path to the file in which time series should be written.



	datasetarray-like
	The dataset of time series to be saved.



	fmtstring (default: “%.18e”)
	Format to be used to write each value.










See also


	load_time_series_txt
	Load time series from disk







Examples

>>> dataset = to_time_series_dataset([[1, 2, 3, 4], [1, 2, 3]])
>>> save_time_series_txt("tmp-tslearn-test.txt", dataset)













            

          

      

      

    

  

  
    
    

    tslearn.utils.check_equal_size
    

    

    

    

    

    
 
  

    
      
          
            
  
tslearn.utils.check_equal_size


	
tslearn.utils.check_equal_size(dataset, be=None)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/utils.py#L372-L401]

	Check if all time series in the dataset have the same size.


	Parameters:

	
	dataset: array-like
	The dataset to check.







	Returns:

	
	bool
	Whether all time series in the dataset have the same size.









Examples

>>> check_equal_size([[1, 2, 3], [4, 5, 6], [5, 3, 2]])
True
>>> check_equal_size([[1, 2, 3, 4], [4, 5, 6], [5, 3, 2]])
False
>>> check_equal_size([])
True
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tslearn.utils.check_dims


	
tslearn.utils.check_dims(X, X_fit_dims=None, extend=True, check_n_features_only=False)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/utils.py#L26-L112]

	Reshapes X to a 3-dimensional array of X.shape[0] univariate
timeseries of length X.shape[1] if X is 2-dimensional and extend
is True. Then checks whether the provided X_fit_dims and the
dimensions of X (except for the first one), match.


	Parameters:

	
	Xarray-like
	The first array to be compared.



	X_fit_dimstuple (default: None)
	The dimensions of the data generated by fit, to compare with
the dimensions of the provided array X.
If None, then only perform reshaping of X, if necessary.



	extendboolean (default: True)
	Whether to reshape X, if it is 2-dimensional.



	check_n_features_only: boolean (default: False)
	





	Returns:

	
	array
	Reshaped X array







	Raises:

	
	ValueError
	Will raise exception if X is None or (if X_fit_dims is provided) one
of the dimensions of the provided data, except the first, does not
match X_fit_dims.









Examples

>>> X = numpy.empty((10, 3))
>>> check_dims(X).shape
(10, 3, 1)
>>> X = numpy.empty((10, 3, 1))
>>> check_dims(X).shape
(10, 3, 1)
>>> X_fit_dims = (5, 3, 1)
>>> check_dims(X, X_fit_dims).shape
(10, 3, 1)
>>> X_fit_dims = (5, 3, 2)
>>> check_dims(X, X_fit_dims)  
Traceback (most recent call last):
ValueError: Dimensions (except first) must match! ((5, 3, 2) and (10, 3, 1)
are passed shapes)
>>> X_fit_dims = (5, 5, 1)
>>> check_dims(X, X_fit_dims, check_n_features_only=True).shape
(10, 3, 1)
>>> X_fit_dims = (5, 5, 2)
>>> check_dims(
...     X,
...     X_fit_dims,
...     check_n_features_only=True
... )  
Traceback (most recent call last):
ValueError: Number of features of the provided timeseries must match!
(last dimension) must match the one of the fitted data!
((5, 5, 2) and (10, 3, 1) are passed shapes)
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tslearn.utils.to_pyts_dataset


	
tslearn.utils.to_pyts_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L58-L91]

	Transform a tslearn-compatible dataset into a pyts dataset.


	Parameters:

	
	X: array, shape = (n_ts, sz, d)
	tslearn-formatted dataset to be cast to pyts format







	Returns:

	
	array, shape=(n_ts, sz) if d=1, (n_ts, d, sz) otherwise
	pyts-formatted dataset









Examples

>>> tslearn_arr = numpy.random.randn(10, 16, 1)
>>> pyts_arr = to_pyts_dataset(tslearn_arr)
>>> pyts_arr.shape
(10, 16)
>>> tslearn_arr = numpy.random.randn(10, 16, 2)
>>> pyts_arr = to_pyts_dataset(tslearn_arr)
>>> pyts_arr.shape
(10, 2, 16)
>>> tslearn_arr = [numpy.random.randn(16, 1), numpy.random.randn(10, 1)]
>>> to_pyts_dataset(tslearn_arr)  
Traceback (most recent call last):
...
ValueError: All the time series in the array should be of equal lengths
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tslearn.utils.from_pyts_dataset


	
tslearn.utils.from_pyts_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L94-L132]

	Transform a pyts-compatible dataset into a tslearn dataset.


	Parameters:

	
	X: array, shape = (n_ts, sz) or (n_ts, d, sz)
	pyts-formatted dataset







	Returns:

	
	array, shape=(n_ts, sz, d)
	tslearn-formatted dataset









Examples

>>> pyts_arr = numpy.random.randn(10, 16)
>>> tslearn_arr = from_pyts_dataset(pyts_arr)
>>> tslearn_arr.shape
(10, 16, 1)
>>> pyts_arr = numpy.random.randn(10, 2, 16)
>>> tslearn_arr = from_pyts_dataset(pyts_arr)
>>> tslearn_arr.shape
(10, 16, 2)
>>> pyts_arr = numpy.random.randn(10)
>>> from_pyts_dataset(pyts_arr)  
Traceback (most recent call last):
...
ValueError: X is not a valid input pyts array.
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tslearn.utils.to_sktime_dataset


	
tslearn.utils.to_sktime_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L275-L318]

	Transform a tslearn-compatible dataset into a sktime dataset.


	Parameters:

	
	X: array, shape = (n_ts, sz, d)
	tslearn-formatted dataset to be cast to sktime format







	Returns:

	
	Pandas data-frame
	sktime-formatted dataset (cf.
link [https://alan-turing-institute.github.io/sktime/examples/loading_data.html])









Notes

Conversion from/to sktime format requires pandas to be installed.

Examples

>>> tslearn_arr = numpy.random.randn(10, 16, 1)
>>> sktime_arr = to_sktime_dataset(tslearn_arr)
>>> sktime_arr.shape
(10, 1)
>>> sktime_arr["dim_0"][0].shape
(16,)
>>> tslearn_arr = numpy.random.randn(10, 16, 2)
>>> sktime_arr = to_sktime_dataset(tslearn_arr)
>>> sktime_arr.shape
(10, 2)
>>> sktime_arr["dim_1"][0].shape
(16,)
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tslearn.utils.from_sktime_dataset


	
tslearn.utils.from_sktime_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L321-L393]

	Transform a sktime-compatible dataset into a tslearn dataset.


	Parameters:

	
	X: pandas data-frame
	sktime-formatted dataset (cf.
link [https://alan-turing-institute.github.io/sktime/examples/loading_data.html])







	Returns:

	
	array, shape=(n_ts, sz, d)
	tslearn-formatted dataset









Notes

Conversion from/to sktime format requires pandas to be installed.

Examples

>>> import pandas as pd
>>> sktime_df = pd.DataFrame()
>>> sktime_df["dim_0"] = [pd.Series([1, 2, 3]), pd.Series([4, 5, 6])]
>>> tslearn_arr = from_sktime_dataset(sktime_df)
>>> tslearn_arr.shape
(2, 3, 1)
>>> sktime_df = pd.DataFrame()
>>> sktime_df["dim_0"] = [pd.Series([1, 2, 3]),
...                       pd.Series([4, 5, 6, 7])]
>>> sktime_df["dim_1"] = [pd.Series([8, 9, 10]),
...                       pd.Series([11, 12, 13, 14])]
>>> tslearn_arr = from_sktime_dataset(sktime_df)
>>> tslearn_arr.shape
(2, 4, 2)
>>> sktime_arr = numpy.random.randn(10, 1, 16)
>>> from_sktime_dataset(
...     sktime_arr
... )  
Traceback (most recent call last):
...
ValueError: X is not a valid input sktime array.
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tslearn.utils.to_cesium_dataset


	
tslearn.utils.to_cesium_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L641-L694]

	Transform a tslearn-compatible dataset into a cesium dataset.


	Parameters:

	
	X: array, shape = (n_ts, sz, d), where n_ts=1
	tslearn-formatted dataset to be cast to cesium format







	Returns:

	
	list of cesium TimeSeries
	cesium-formatted dataset (cf.
link [http://cesium-ml.org/docs/api/cesium.time_series.html#cesium.time_series.TimeSeries])









Notes

Conversion from/to cesium format requires cesium to be installed.

Examples

>>> tslearn_arr = numpy.random.randn(3, 16, 1)
>>> cesium_ds = to_cesium_dataset(tslearn_arr)
>>> len(cesium_ds)
3
>>> cesium_ds[0].measurement.shape
(16,)
>>> tslearn_arr = numpy.random.randn(3, 16, 2)
>>> cesium_ds = to_cesium_dataset(tslearn_arr)
>>> len(cesium_ds)
3
>>> cesium_ds[0].measurement.shape
(2, 16)
>>> tslearn_arr = [[1, 2, 3], [1, 2, 3, 4]]
>>> cesium_ds = to_cesium_dataset(tslearn_arr)
>>> len(cesium_ds)
2
>>> cesium_ds[0].measurement.shape
(3,)
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tslearn.utils.from_cesium_dataset


	
tslearn.utils.from_cesium_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L697-L761]

	Transform a cesium-compatible dataset into a tslearn dataset.


	Parameters:

	
	X: list of cesium TimeSeries
	cesium-formatted dataset (cf.
link [http://cesium-ml.org/docs/api/cesium.time_series.html#cesium.time_series.TimeSeries])







	Returns:

	
	array, shape=(n_ts, sz, d)
	tslearn-formatted dataset.









Notes

Conversion from/to cesium format requires cesium to be installed.

Examples

>>> from cesium.time_series import TimeSeries
>>> cesium_ds = [TimeSeries(m=numpy.array([1, 2, 3, 4]))]
>>> tslearn_arr = from_cesium_dataset(cesium_ds)
>>> tslearn_arr.shape
(1, 4, 1)
>>> cesium_ds = [
...     TimeSeries(m=numpy.array([[1, 2, 3, 4],
...                               [5, 6, 7, 8]]))
... ]
>>> tslearn_arr = from_cesium_dataset(cesium_ds)
>>> tslearn_arr.shape
(1, 4, 2)
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tslearn.utils.to_seglearn_dataset


	
tslearn.utils.to_seglearn_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L135-L169]

	Transform a tslearn-compatible dataset into a seglearn dataset.


	Parameters:

	
	X: array, shape = (n_ts, sz, d)
	tslearn-formatted dataset to be cast to seglearn format







	Returns:

	
	array of arrays, shape=(n_ts, )
	seglearn-formatted dataset. i-th sub-array in the list has shape
(sz_i, d)









Examples

>>> tslearn_arr = numpy.random.randn(10, 16, 1)
>>> seglearn_arr = to_seglearn_dataset(tslearn_arr)
>>> seglearn_arr.shape
(10, 16, 1)
>>> tslearn_arr = numpy.random.randn(10, 16, 2)
>>> seglearn_arr = to_seglearn_dataset(tslearn_arr)
>>> seglearn_arr.shape
(10, 16, 2)
>>> tslearn_arr = [numpy.random.randn(16, 2), numpy.random.randn(10, 2)]
>>> seglearn_arr = to_seglearn_dataset(tslearn_arr)
>>> seglearn_arr.shape
(2,)
>>> seglearn_arr[0].shape
(16, 2)
>>> seglearn_arr[1].shape
(10, 2)
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tslearn.utils.from_seglearn_dataset


	
tslearn.utils.from_seglearn_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L172-L201]

	Transform a seglearn-compatible dataset into a tslearn dataset.


	Parameters:

	
	X: list of arrays, or array of arrays, shape = (n_ts, )
	seglearn-formatted dataset. i-th sub-array in the list has shape
(sz_i, d)







	Returns:

	
	array, shape=(n_ts, sz, d), where sz is the maximum of all array lengths
	tslearn-formatted dataset









Examples

>>> seglearn_arr = [numpy.random.randn(10, 1), numpy.random.randn(10, 1)]
>>> tslearn_arr = from_seglearn_dataset(seglearn_arr)
>>> tslearn_arr.shape
(2, 10, 1)
>>> seglearn_arr = [numpy.random.randn(10, 1), numpy.random.randn(5, 1)]
>>> tslearn_arr = from_seglearn_dataset(seglearn_arr)
>>> tslearn_arr.shape
(2, 10, 1)
>>> seglearn_arr = numpy.random.randn(2, 10, 1)
>>> tslearn_arr = from_seglearn_dataset(seglearn_arr)
>>> tslearn_arr.shape
(2, 10, 1)
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tslearn.utils.to_tsfresh_dataset


	
tslearn.utils.to_tsfresh_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L514-L561]

	Transform a tslearn-compatible dataset into a tsfresh dataset.


	Parameters:

	
	X: array, shape = (n_ts, sz, d)
	tslearn-formatted dataset to be cast to tsfresh format







	Returns:

	
	Pandas data-frame
	tsfresh-formatted dataset (“flat” data frame, as described
there [https://tsfresh.readthedocs.io/en/latest/text/data_formats.html#input-option-1-flat-dataframe])









Notes

Conversion from/to tsfresh format requires pandas to be installed.

Examples

>>> tslearn_arr = numpy.random.randn(1, 16, 1)
>>> tsfresh_df = to_tsfresh_dataset(tslearn_arr)
>>> tsfresh_df.shape
(16, 3)
>>> tslearn_arr = numpy.random.randn(1, 16, 2)
>>> tsfresh_df = to_tsfresh_dataset(tslearn_arr)
>>> tsfresh_df.shape
(16, 4)
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tslearn.utils.from_tsfresh_dataset


	
tslearn.utils.from_tsfresh_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L564-L638]

	Transform a tsfresh-compatible dataset into a tslearn dataset.


	Parameters:

	
	X: pandas data-frame
	tsfresh-formatted dataset (“flat” data frame, as described
there [https://tsfresh.readthedocs.io/en/latest/text/data_formats.html#input-option-1-flat-dataframe])







	Returns:

	
	array, shape=(n_ts, sz, d)
	tslearn-formatted dataset.
Column order is kept the same as in the original data frame.









Notes

Conversion from/to tsfresh format requires pandas to be installed.

Examples

>>> import pandas as pd
>>> tsfresh_df = pd.DataFrame(columns=["id", "time", "a", "b"])
>>> tsfresh_df["id"] = [0, 0, 0]
>>> tsfresh_df["time"] = [0, 1, 2]
>>> tsfresh_df["a"] = [-1, 4, 7]
>>> tsfresh_df["b"] = [8, -3, 2]
>>> tslearn_arr = from_tsfresh_dataset(tsfresh_df)
>>> tslearn_arr.shape
(1, 3, 2)
>>> tsfresh_df = pd.DataFrame(columns=["id", "time", "a"])
>>> tsfresh_df["id"] = [0, 0, 0, 1, 1]
>>> tsfresh_df["time"] = [0, 1, 2, 0, 1]
>>> tsfresh_df["a"] = [-1, 4, 7, 9, 1]
>>> tslearn_arr = from_tsfresh_dataset(tsfresh_df)
>>> tslearn_arr.shape
(2, 3, 1)
>>> tsfresh_df = numpy.random.randn(10, 1, 16)
>>> from_tsfresh_dataset(
...     tsfresh_df
... )  
Traceback (most recent call last):
...
ValueError: X is not a valid input tsfresh array.
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tslearn.utils.to_stumpy_dataset


	
tslearn.utils.to_stumpy_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L204-L240]

	Transform a tslearn-compatible dataset into a stumpy dataset.


	Parameters:

	
	X: array, shape = (n_ts, sz, d)
	tslearn-formatted dataset to be cast to stumpy format







	Returns:

	
	list of arrays of shape=(d, sz_i) if d > 1 or (sz_i, ) otherwise
	stumpy-formatted dataset.









Examples

>>> tslearn_arr = numpy.random.randn(10, 16, 1)
>>> stumpy_arr = to_stumpy_dataset(tslearn_arr)
>>> len(stumpy_arr)
10
>>> stumpy_arr[0].shape
(16,)
>>> tslearn_arr = numpy.random.randn(10, 16, 2)
>>> stumpy_arr = to_stumpy_dataset(tslearn_arr)
>>> len(stumpy_arr)
10
>>> stumpy_arr[0].shape
(2, 16)
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tslearn.utils.from_stumpy_dataset


	
tslearn.utils.from_stumpy_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L243-L272]

	Transform a stumpy-compatible dataset into a tslearn dataset.


	Parameters:

	
	X: list of arrays of shapes (d, sz_i) if d > 1 or (sz_i, ) otherwise
	stumpy-formatted dataset.







	Returns:

	
	array, shape=(n_ts, sz, d), where sz is the maximum of all array lengths
	tslearn-formatted dataset









Examples

>>> stumpy_arr = [numpy.random.randn(10), numpy.random.randn(10)]
>>> tslearn_arr = from_stumpy_dataset(stumpy_arr)
>>> tslearn_arr.shape
(2, 10, 1)
>>> stumpy_arr = [numpy.random.randn(3, 10), numpy.random.randn(3, 5)]
>>> tslearn_arr = from_stumpy_dataset(stumpy_arr)
>>> tslearn_arr.shape
(2, 10, 3)
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tslearn.utils.to_pyflux_dataset


	
tslearn.utils.to_pyflux_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L396-L444]

	Transform a tslearn-compatible dataset into a pyflux dataset.


	Parameters:

	
	X: array, shape = (n_ts, sz, d), where n_ts=1
	tslearn-formatted dataset to be cast to pyflux format







	Returns:

	
	Pandas data-frame
	pyflux-formatted dataset (cf.
link [https://pyflux.readthedocs.io/en/latest/getting_started.html])









Notes

Conversion from/to pyflux format requires pandas to be installed.

Examples

>>> tslearn_arr = numpy.random.randn(1, 16, 1)
>>> pyflux_df = to_pyflux_dataset(tslearn_arr)
>>> pyflux_df.shape
(16, 1)
>>> pyflux_df.columns[0]
'dim_0'
>>> tslearn_arr = numpy.random.randn(1, 16, 2)
>>> pyflux_df = to_pyflux_dataset(tslearn_arr)
>>> pyflux_df.shape
(16, 2)
>>> pyflux_df.columns[1]
'dim_1'
>>> tslearn_arr = numpy.random.randn(10, 16, 1)
>>> to_pyflux_dataset(tslearn_arr)  
Traceback (most recent call last):
...
ValueError: Array should be made of a single time series (10 here)
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tslearn.utils.from_pyflux_dataset


	
tslearn.utils.from_pyflux_dataset(X)[source] [https://github.com/tslearn-team/tslearn/blob/6105b3c/tslearn/utils/cast.py#L447-L511]

	Transform a pyflux-compatible dataset into a tslearn dataset.


	Parameters:

	
	X: pandas data-frame
	pyflux-formatted dataset







	Returns:

	
	array, shape=(n_ts, sz, d), where n_ts=1
	tslearn-formatted dataset.
Column order is kept the same as in the original data frame.









Notes

Conversion from/to pyflux format requires pandas to be installed.

Examples

>>> import pandas as pd
>>> pyflux_df = pd.DataFrame()
>>> pyflux_df["dim_0"] = numpy.random.rand(10)
>>> tslearn_arr = from_pyflux_dataset(pyflux_df)
>>> tslearn_arr.shape
(1, 10, 1)
>>> pyflux_df = pd.DataFrame()
>>> pyflux_df["dim_0"] = numpy.random.rand(10)
>>> pyflux_df["dim_1"] = numpy.random.rand(10)
>>> pyflux_df["dim_2"] = numpy.random.rand(10)
>>> tslearn_arr = from_pyflux_dataset(pyflux_df)
>>> tslearn_arr.shape
(1, 10, 3)
>>> pyflux_arr = numpy.random.randn(10, 1, 16)
>>> from_pyflux_dataset(
...     pyflux_arr
... )  
Traceback (most recent call last):
...
ValueError: X is not a valid input pyflux array.
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Gallery of examples
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Download all examples in Python source code: auto_examples_python.zip




Download all examples in Jupyter notebooks: auto_examples_jupyter.zip
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Note

Go to the end
to download the full example code




Longest Common Subsequence

This example illustrates LCSS computation between time series and plots the
alignment path [1]. and its relationship to the DTW.

Since LCSS focuses on the similar parts between two time-series, a potential
use case is to identify the similarity between time-series whose lengths differ
greatly or have noise. As one example, M. Vlachos et al. [1] used this method
to cluster time series regarding human writing in the presence of noise.

The example demonstrates the use of the functions lcss_path and dtw_path
to calculate the alignment path between them and compare the two approaches
when dealing with unequal-length sequence data and noise.

[1] M. Vlachos, D. Gunopoulos, and G. Kollios. 2002. “Discovering Similar
Multidimensional Trajectories”, In Proceedings of the 18th International
Conference on Data Engineering (ICDE ‘02). IEEE Computer Society, USA, 673.
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# Author: Daniela Duarte
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt

from tslearn.generators import random_walks
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn import metrics


numpy.random.seed(0)
n_ts, sz, d = 2, 100, 1
dataset = random_walks(n_ts=n_ts, sz=sz, d=d, random_state=5)
scaler = TimeSeriesScalerMeanVariance(mu=0., std=1.)  # Rescale time series
dataset_scaled = scaler.fit_transform(dataset)

lcss_path, sim_lcss = metrics.lcss_path(dataset_scaled[0, :, 0], dataset_scaled[1, :40, 0], eps=1.5)
dtw_path, sim_dtw = metrics.dtw_path(dataset_scaled[0, :, 0], dataset_scaled[1, :40, 0])

plt.figure(1, figsize=(8, 8))

plt.plot(dataset_scaled[0, :, 0], "b-", label='First time series')
plt.plot(dataset_scaled[1, :40, 0], "g-", label='Second time series')

for positions in lcss_path:
    plt.plot([positions[0], positions[1]],
             [dataset_scaled[0, positions[0], 0], dataset_scaled[1, positions[1], 0]], color='orange')
plt.legend()
plt.title("Time series matching with LCSS")

plt.figure(2, figsize=(8, 8))
plt.plot(dataset_scaled[0, :, 0], "b-", label='First time series')
plt.plot(dataset_scaled[1, :40, 0], "g-", label='Second time series')

for positions in dtw_path:
    plt.plot([positions[0], positions[1]],
             [dataset_scaled[0, positions[0], 0], dataset_scaled[1, positions[1], 0]], color='orange')

plt.legend()
plt.title("Time series matching with DTW")

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 3.105 seconds)



Download Jupyter notebook: plot_lcss.ipynb




Download Python source code: plot_lcss.py
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LB_Keogh

This example illustrates the principle of time series envelope and its
relationship to the “LB_Keogh” lower bound [1].

The envelope of a time series consists of two time series such that the
original time series is between the two time series. Denoting the original
time series \(X = (X_i)_{1 \leq i \leq n}\), the envelope of this time
series is an ensemble of two time series of same length
\(L = (l_i)_{1 \leq i \leq n}\) and \(U = (u_i)_{1 \leq i \leq n}\)
such that for all \(i \in \{1, \ldots, n\}\):


\[ \begin{align}\begin{aligned}u_i = \max(x_{i - r}, \ldots, x_{i + r})\\l_i = \min(x_{i - r}, \ldots, x_{i + r})\end{aligned}\end{align} \]

where \(r\) is the radius of the envelope.

The distance between a time series $Q$ and an envelope \((L, U)\) is
defined as:


\[\begin{split}LB_{Keogh}(Q, (L, U)) = \sqrt{\sum_{i=1}^n
\begin{cases}
      (q_i - u_i)^2 & \text{if $q_i > u_i$}\\
      (q_i - l_i)^2 & \text{if $q_i < l_i$}\\
      0 & \text{otherwise}
\end{cases}
}\end{split}\]

So it is simply the Euclidean distance between \(Q\) and the envelope.

[1] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time
warping”. Knowledge and Information Systems, 7(3), 358-386 (2004).


	[image: Envelope around a time series with radius=3]

	[image: Distance between the second time series and  the envelope = 10.3211]



# Author: Romain Tavenard
#         Johann Faouzi
# License: BSD 3 clause
# sphinx_gallery_thumbnail_number = 2

import numpy
import matplotlib.pyplot as plt

from tslearn.generators import random_walks
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn import metrics

numpy.random.seed(0)
n_ts, sz, d = 2, 100, 1
dataset = random_walks(n_ts=n_ts, sz=sz, d=d)
scaler = TimeSeriesScalerMeanVariance(mu=0., std=1.)  # Rescale time series
dataset_scaled = scaler.fit_transform(dataset)

plt.figure(figsize=(14, 8))
envelope_down, envelope_up = metrics.lb_envelope(dataset_scaled[0], radius=3)
plt.plot(dataset_scaled[0, :, 0], "r-", label='First time series')
plt.plot(envelope_down[:, 0], "b-", label='Lower envelope')
plt.plot(envelope_up[:, 0], "g-", label='Upper envelope')
plt.legend()
plt.title('Envelope around a time series with radius=3')

plt.figure(figsize=(14, 8))
plt.plot(envelope_down[:, 0], "b-", label='Lower envelope')
plt.plot(envelope_up[:, 0], "g-", label='Upper envelope')
plt.plot(dataset_scaled[1, :, 0], "k-", label='Second time series')
plt.vlines(numpy.arange(sz), dataset_scaled[1, :, 0], numpy.clip(
    dataset_scaled[1, :, 0], envelope_down[:, 0], envelope_up[:, 0]),
           label='Distance', color='orange')
plt.legend()
lb_k_sim = metrics.lb_keogh(dataset_scaled[1],
                            envelope_candidate=(envelope_down, envelope_up))
plt.title('Distance between the second time series and \n'
          'the envelope = {:.4f}'.format(lb_k_sim))

plt.show()





Total running time of the script: (0 minutes 1.365 seconds)



Download Jupyter notebook: plot_lb_keogh.ipynb




Download Python source code: plot_lb_keogh.py





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]
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Canonical Time Warping

This example illustrates the use of Canonical Time Warping (CTW) between time
series and plots the matches obtained by the method [1].

Note that, contrary to Dynamic Time Warping (DTW) [2], CTW can almost retrieve
the ground-truth alignment (green matches) even when time series have suffered
a rigid transformation (rotation+translation here).

The time series at stake in this example are color-coded trajectories whose
starting (resp. end) point are depicted in blue (resp. red).



[1]
F. Zhou and F. Torre, “Canonical time warping for alignment of human
behavior”. NIPS 2009.



[2]
H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition”. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 26(1), 43-49 (1978).



[image: DTW, CTW]# Author: Romain Tavenard
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from tslearn.metrics import dtw_path, ctw_path

def plot_trajectory(ts, ax, color_code=None, alpha=1.):
    if color_code is not None:
        colors = [color_code] * len(ts)
    else:
        colors = plt.cm.jet(np.linspace(0, 1, len(ts)))
    for i in range(len(ts) - 1):
        ax.plot(ts[i:i+2, 0], ts[i:i+2, 1],
                marker='o', c=colors[i], alpha=alpha)


def get_rot2d(theta):
    return np.array(
        [[np.cos(theta), -np.sin(theta)],
         [np.sin(theta), np.cos(theta)]]
    )


def make_one_folium(sz, a=1., noise=.1, resample_fun=None):
    theta = np.linspace(0, 1, sz)
    if resample_fun is not None:
        theta = resample_fun(theta)
    theta -= .5
    theta *= .9 * np.pi
    theta = theta.reshape((-1, 1))
    r = a / 2 * (4 * np.cos(theta) - 1. / np.cos(theta))
    x = r * np.cos(theta) + np.random.rand(sz, 1) * noise
    y = r * np.sin(theta) + np.random.rand(sz, 1) * noise
    return np.array(np.hstack((x, y)))

trajectory = make_one_folium(sz=30).dot(get_rot2d(np.pi + np.pi / 3))
rotated_trajectory = trajectory.dot(get_rot2d(np.pi / 4)) + np.array([0., 3.])

path_dtw, _ = dtw_path(trajectory, rotated_trajectory)

path_ctw, cca, _ = ctw_path(trajectory, rotated_trajectory,
                            max_iter=100, n_components=2)

plt.figure(figsize=(8, 4))
ax = plt.subplot(1, 2, 1)
for (i, j) in path_dtw:
    ax.plot([trajectory[i, 0], rotated_trajectory[j, 0]],
            [trajectory[i, 1], rotated_trajectory[j, 1]],
            color='g' if i == j else 'r', alpha=.5)
plot_trajectory(trajectory, ax)
plot_trajectory(rotated_trajectory, ax)
ax.set_xticks([])
ax.set_yticks([])
ax.set_title("DTW")

ax = plt.subplot(1, 2, 2)
for (i, j) in path_ctw:
    ax.plot([trajectory[i, 0], rotated_trajectory[j, 0]],
            [trajectory[i, 1], rotated_trajectory[j, 1]],
            color='g' if i == j else 'r', alpha=.5)
plot_trajectory(trajectory, ax)
plot_trajectory(rotated_trajectory, ax)
ax.set_xticks([])
ax.set_yticks([])
ax.set_title("CTW")

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 0.386 seconds)



Download Jupyter notebook: plot_ctw.ipynb




Download Python source code: plot_ctw.py





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]
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sDTW multi path matching

This example illustrates how subsequent DTW can be used to find multiple
matches of a sequence in a longer sequence.

A potential usecase is to identify the occurrence of certain events in
continuous sensor signals. As one example Barth et al. [1] used this method
to find stride in sensor recordings of gait.

The example demonstrates the use of the functions
subsequence_cost_matrix and subsequence_path
to manually calculate warping paths from multiple potential alignments. If
you are only interested in finding the optimal alignment, you can directly use
dtw_subsequence_path.

[1] Barth, et al. (2013): Subsequence dynamic time warping as a method for robust step segmentation using gyroscope signals of daily life activities, EMBS, https://doi.org/10.1109/EMBC.2013.6611104

[image: plot sdtw]Shape long sequence: (500, 1)
Shape short sequence: (100, 1)











# Author: Arne Kuederle
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy
from scipy.signal import find_peaks

from tslearn import metrics
from tslearn.generators import random_walks
from tslearn.preprocessing import TimeSeriesScalerMeanVariance

numpy.random.seed(0)
n_ts, sz, d = 2, 100, 1
n_repeat = 5
dataset = random_walks(n_ts=n_ts, sz=sz, d=d)
scaler = TimeSeriesScalerMeanVariance(mu=0., std=1.)  # Rescale time series
dataset_scaled = scaler.fit_transform(dataset)

# We repeat the long sequence multiple times to generate multiple possible
# matches
long_sequence = numpy.tile(dataset_scaled[1], (n_repeat, 1))
short_sequence = dataset_scaled[0]

sz1 = len(long_sequence)
sz2 = len(short_sequence)

print('Shape long sequence: {}'.format(long_sequence.shape))
print('Shape short sequence: {}'.format(short_sequence.shape))

# Calculate the accumulated cost matrix
mat = metrics.subsequence_cost_matrix(short_sequence,
                                      long_sequence)

# Calculate cost function
cost_func = mat[-1, :]

# Identify potential matches in the cost function (parameters are tuned to
# fit this example)
potential_matches = find_peaks(-cost_func, distance=sz * 0.75, height=-50)[0]

# Calculate the optimal warping path starting from each of the identified
# minima
paths = [metrics.subsequence_path(mat, match) for match in
         potential_matches]

plt.figure(1, figsize=(6 * n_repeat, 6))

# definitions for the axes
left, bottom = 0.01, 0.1
h_ts = 0.2
w_ts = h_ts / n_repeat
left_h = left + w_ts + 0.02
width = height = 0.65
bottom_h = bottom + height + 0.02

rect_s_y = [left, bottom, w_ts, height]
rect_gram = [left_h, bottom, width, height]
rect_s_x = [left_h, bottom_h, width, h_ts]

ax_gram = plt.axes(rect_gram)
ax_s_x = plt.axes(rect_s_x)
ax_s_y = plt.axes(rect_s_y)

ax_gram.imshow(numpy.sqrt(mat))
ax_gram.axis("off")
ax_gram.autoscale(False)

# Plot the paths
for path in paths:
    ax_gram.plot([j for (i, j) in path], [i for (i, j) in path], "w-",
                 linewidth=3.)

ax_s_x.plot(numpy.arange(sz1), long_sequence, "b-", linewidth=3.)
ax_s_x.axis("off")
ax_s_x.set_xlim((0, sz1 - 1))

ax_s_y.plot(- short_sequence, numpy.arange(sz2)[::-1], "b-", linewidth=3.)
ax_s_y.axis("off")
ax_s_y.set_ylim((0, sz2 - 1))

plt.show()





Total running time of the script: (0 minutes 0.856 seconds)



Download Jupyter notebook: plot_sdtw.ipynb




Download Python source code: plot_sdtw.py





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]
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Longest Commom Subsequence with a custom distance metric

This example illustrates how to use the LCSS computation of the
alignment path [1] on an user-defined distance matrix using
dtw_path_from_metric().

The example is the LCSS of two angular time series using the length of the arc on the
unit circle as a distance metric [2].

The image represent cost matrices, that is, the length of the arc
between each pair of angles on the unit circle. The corresponding time series are
represented at the left and at the top of each cost matrix.

The alignment path, that is the path where the matches between the two time-series
occurred within the pre-defined threshold, is represented in white on the image.



[1]
M. Vlachos, D. Gunopoulos, and G. Kollios. 2002. “Discovering Similar
Multidimensional Trajectories”, In Proceedings of the 18th International
Conference on Data Engineering (ICDE ‘02). IEEE Computer Society, USA, 673.



[2]
Definition of the length of an arc on Wikipedia [https://en.wikipedia.org/wiki/Arc_(geometry)#Length_of_an_arc_of_a_circle].



[image: plot lcss custom metric]/home/docs/checkouts/readthedocs.org/user_builds/tslearn/checkouts/latest/docs/examples/metrics/plot_lcss_custom_metric.py:119: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
  plt.tight_layout()











# Author: Daniela Duarte
# License: BSD 3 clause
# sphinx_gallery_thumbnail_number = 2

import numpy as np
from numpy import pi
from sklearn.metrics import pairwise_distances
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap

from tslearn.generators import random_walks
from tslearn import metrics
from tslearn.preprocessing import TimeSeriesScalerMeanVariance


np.random.seed(0)
n_ts, sz = 2, 100


# Example : Length of the arc between two angles on a circle
def arc_length(angle_1, angle_2, r=1.):
    """Length of the arc between two angles (in rad) on a circle of
    radius r.
    """
    # Compute the angle between the two inputs between 0 and 2*pi.
    theta = np.mod(angle_2 - angle_1, 2*pi)
    if theta > pi:
        theta = theta - 2 * pi
    # Return the length of the arc
    L = r * np.abs(theta)
    return(L)


dataset_1 = random_walks(n_ts=n_ts, sz=sz, d=1)
scaler = TimeSeriesScalerMeanVariance(mu=0., std=pi)  # Rescale the time series
dataset_scaled_1 = scaler.fit_transform(dataset_1)

# LCSS using a function as the metric argument
path_1, sim_1 = metrics.lcss_path_from_metric(
    dataset_scaled_1[0], dataset_scaled_1[1], metric=arc_length
)

# Plots
# Compute the distance matrices for the plot
distances_1 = pairwise_distances(
    dataset_scaled_1[0], dataset_scaled_1[1], metric=arc_length
)

# Definitions for the axes
left, bottom = 0.01, 0.1
w_ts = h_ts = 0.2
left_h = left + w_ts + 0.02
width = height = 0.65
bottom_h = bottom + height + 0.02

rect_s_y = [left, bottom, w_ts, height]
rect_dist = [left_h, bottom, width, height]
rect_s_x = [left_h, bottom_h, width, h_ts]

# Plot example
plt.figure(1, figsize=(6, 6))
ax_dist = plt.axes(rect_dist)
ax_s_x = plt.axes(rect_s_x)
ax_s_y = plt.axes(rect_s_y)

ax_dist.imshow(distances_1, origin='lower')
ax_dist.axis("off")
ax_dist.autoscale(False)
ax_dist.plot(*zip(*path_1), "w-", linewidth=3.)

ticks_location = [-pi, 0, pi]
ticks_labels = [r"$\bf-\pi$", r"$\bf0$", r"$\bf\pi$"]

ax_s_x.plot([0, sz - 1], [ticks_location]*2, "k--", alpha=.2)
ax_s_x.plot(np.arange(sz), dataset_scaled_1[1], "b-", linewidth=3.)
ax_s_x.set_xlim((0, sz - 1))
ax_s_x.axis("off")

ax_s_y.plot([ticks_location]*2, [0, sz - 1], "k--", alpha=.2)
ax_s_y.plot(-dataset_scaled_1[0], np.arange(sz), "b-", linewidth=3.)
ax_s_y.set_ylim((0, sz - 1))
ax_s_y.axis("off")

for loc, s in zip(ticks_location, ticks_labels):
    ax_s_x.text(0, loc, s, fontsize="large", color="grey",
                horizontalalignment="right", verticalalignment="center")
    ax_s_y.text(-loc, 0, s, fontsize="large", color="grey",
                horizontalalignment="center", verticalalignment="top")

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 1.249 seconds)



Download Jupyter notebook: plot_lcss_custom_metric.ipynb




Download Python source code: plot_lcss_custom_metric.py
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Dynamic Time Warping

This example illustrates Dynamic Time Warping (DTW) computation between time
series and plots the optimal alignment path [1].

The image represents cost matrix, that is the squared Euclidean distance for
each time point between both time series, which are represented
at the left and at the top of the cost matrix.

The optimal path, that is the path that minimizes the total cost to go from
the first time point to the last one, is represented in white on the image.



[1]
H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition”. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 26(1), 43-49 (1978).



[image: plot dtw]/home/docs/checkouts/readthedocs.org/user_builds/tslearn/checkouts/latest/docs/examples/metrics/plot_dtw.py:103: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
  plt.tight_layout()











# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt

from tslearn import metrics

numpy.random.seed(0)

s_x = numpy.array(
    [-0.790, -0.765, -0.734, -0.700, -0.668, -0.639, -0.612, -0.587, -0.564,
     -0.544, -0.529, -0.518, -0.509, -0.502, -0.494, -0.488, -0.482, -0.475,
     -0.472, -0.470, -0.465, -0.464, -0.461, -0.458, -0.459, -0.460, -0.459,
     -0.458, -0.448, -0.431, -0.408, -0.375, -0.333, -0.277, -0.196, -0.090,
     0.047, 0.220, 0.426, 0.671, 0.962, 1.300, 1.683, 2.096, 2.510, 2.895,
     3.219, 3.463, 3.621, 3.700, 3.713, 3.677, 3.606, 3.510, 3.400, 3.280,
     3.158, 3.038, 2.919, 2.801, 2.676, 2.538, 2.382, 2.206, 2.016, 1.821,
     1.627, 1.439, 1.260, 1.085, 0.917, 0.758, 0.608, 0.476, 0.361, 0.259,
     0.173, 0.096, 0.027, -0.032, -0.087, -0.137, -0.179, -0.221, -0.260,
     -0.293, -0.328, -0.359, -0.385, -0.413, -0.437, -0.458, -0.480, -0.498,
     -0.512, -0.526, -0.536, -0.544, -0.552, -0.556, -0.561, -0.565, -0.568,
     -0.570, -0.570, -0.566, -0.560, -0.549, -0.532, -0.510, -0.480, -0.443,
     -0.402, -0.357, -0.308, -0.256, -0.200, -0.139, -0.073, -0.003, 0.066,
     0.131, 0.186, 0.229, 0.259, 0.276, 0.280, 0.272, 0.256, 0.234, 0.209,
     0.186, 0.162, 0.139, 0.112, 0.081, 0.046, 0.008, -0.032, -0.071, -0.110,
     -0.147, -0.180, -0.210, -0.235, -0.256, -0.275, -0.292, -0.307, -0.320,
     -0.332, -0.344, -0.355, -0.363, -0.367, -0.364, -0.351, -0.330, -0.299,
     -0.260, -0.217, -0.172, -0.128, -0.091, -0.060, -0.036, -0.022, -0.016,
     -0.020, -0.037, -0.065, -0.104, -0.151, -0.201, -0.253, -0.302, -0.347,
     -0.388, -0.426, -0.460, -0.491, -0.517, -0.539, -0.558, -0.575, -0.588,
     -0.600, -0.606, -0.607, -0.604, -0.598, -0.589, -0.577, -0.558, -0.531,
     -0.496, -0.454, -0.410, -0.364, -0.318, -0.276, -0.237, -0.203, -0.176,
     -0.157, -0.145, -0.142, -0.145, -0.154, -0.168, -0.185, -0.206, -0.230,
     -0.256, -0.286, -0.318, -0.351, -0.383, -0.414, -0.442, -0.467, -0.489,
     -0.508, -0.523, -0.535, -0.544, -0.552, -0.557, -0.560, -0.560, -0.557,
     -0.551, -0.542, -0.531, -0.519, -0.507, -0.494, -0.484, -0.476, -0.469,
     -0.463, -0.456, -0.449, -0.442, -0.435, -0.431, -0.429, -0.430, -0.435,
     -0.442, -0.452, -0.465, -0.479, -0.493, -0.506, -0.517, -0.526, -0.535,
     -0.548, -0.567, -0.592, -0.622, -0.655, -0.690, -0.728, -0.764, -0.795,
     -0.815, -0.823, -0.821])

s_y1 = numpy.concatenate((s_x, s_x)).reshape((-1, 1))
s_y2 = numpy.concatenate((s_x, s_x[::-1])).reshape((-1, 1))
sz = s_y1.shape[0]

path, sim = metrics.dtw_path(s_y1, s_y2)

plt.figure(1, figsize=(8, 8))

# definitions for the axes
left, bottom = 0.01, 0.1
w_ts = h_ts = 0.2
left_h = left + w_ts + 0.02
width = height = 0.65
bottom_h = bottom + height + 0.02

rect_s_y = [left, bottom, w_ts, height]
rect_gram = [left_h, bottom, width, height]
rect_s_x = [left_h, bottom_h, width, h_ts]

ax_gram = plt.axes(rect_gram)
ax_s_x = plt.axes(rect_s_x)
ax_s_y = plt.axes(rect_s_y)

mat = cdist(s_y1, s_y2)

ax_gram.imshow(mat, origin='lower')
ax_gram.axis("off")
ax_gram.autoscale(False)
ax_gram.plot([j for (i, j) in path], [i for (i, j) in path], "w-",
             linewidth=3.)

ax_s_x.plot(numpy.arange(sz), s_y2, "b-", linewidth=3.)
ax_s_x.axis("off")
ax_s_x.set_xlim((0, sz - 1))

ax_s_y.plot(- s_y1, numpy.arange(sz), "b-", linewidth=3.)
ax_s_y.axis("off")
ax_s_y.set_ylim((0, sz - 1))

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 0.259 seconds)



Download Jupyter notebook: plot_dtw.ipynb




Download Python source code: plot_dtw.py
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Soft Dynamic Time Warping

This example illustrates Soft Dynamic Time Warping (DTW) computation between
time series and plots the optimal soft alignment matrices [1].



[1]
M. Cuturi, M. Blondel “Soft-DTW: a Differentiable Loss Function for
Time-Series,” ICML 2017.




	[image: $\gamma=0.0$]
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# Author: Romain Tavenard
# License: BSD 3 clause
# sphinx_gallery_thumbnail_number = 3

import numpy
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt

from tslearn import metrics

numpy.random.seed(0)

s_x = numpy.array(
    [-0.790, -0.765, -0.734, -0.700, -0.668, -0.639, -0.612, -0.587, -0.564,
     -0.544, -0.529, -0.518, -0.509, -0.502, -0.494, -0.488, -0.482, -0.475,
     -0.472, -0.470, -0.465, -0.464, -0.461, -0.458, -0.459, -0.460, -0.459,
     -0.458, -0.448, -0.431, -0.408, -0.375, -0.333, -0.277, -0.196, -0.090,
     0.047, 0.220, 0.426, 0.671, 0.962, 1.300, 1.683, 2.096, 2.510, 2.895,
     3.219, 3.463, 3.621, 3.700, 3.713, 3.677, 3.606, 3.510, 3.400, 3.280,
     3.158, 3.038, 2.919, 2.801, 2.676, 2.538, 2.382, 2.206, 2.016, 1.821,
     1.627, 1.439, 1.260, 1.085, 0.917, 0.758, 0.608, 0.476, 0.361, 0.259,
     0.173, 0.096, 0.027, -0.032, -0.087, -0.137, -0.179, -0.221, -0.260,
     -0.293, -0.328, -0.359, -0.385, -0.413, -0.437, -0.458, -0.480, -0.498,
     -0.512, -0.526, -0.536, -0.544, -0.552, -0.556, -0.561, -0.565, -0.568,
     -0.570, -0.570, -0.566, -0.560, -0.549, -0.532, -0.510, -0.480, -0.443,
     -0.402, -0.357, -0.308, -0.256, -0.200, -0.139, -0.073, -0.003, 0.066,
     0.131, 0.186, 0.229, 0.259, 0.276, 0.280, 0.272, 0.256, 0.234, 0.209,
     0.186, 0.162, 0.139, 0.112, 0.081, 0.046, 0.008, -0.032, -0.071, -0.110,
     -0.147, -0.180, -0.210, -0.235, -0.256, -0.275, -0.292, -0.307, -0.320,
     -0.332, -0.344, -0.355, -0.363, -0.367, -0.364, -0.351, -0.330, -0.299,
     -0.260, -0.217, -0.172, -0.128, -0.091, -0.060, -0.036, -0.022, -0.016,
     -0.020, -0.037, -0.065, -0.104, -0.151, -0.201, -0.253, -0.302, -0.347,
     -0.388, -0.426, -0.460, -0.491, -0.517, -0.539, -0.558, -0.575, -0.588,
     -0.600, -0.606, -0.607, -0.604, -0.598, -0.589, -0.577, -0.558, -0.531,
     -0.496, -0.454, -0.410, -0.364, -0.318, -0.276, -0.237, -0.203, -0.176,
     -0.157, -0.145, -0.142, -0.145, -0.154, -0.168, -0.185, -0.206, -0.230,
     -0.256, -0.286, -0.318, -0.351, -0.383, -0.414, -0.442, -0.467, -0.489,
     -0.508, -0.523, -0.535, -0.544, -0.552, -0.557, -0.560, -0.560, -0.557,
     -0.551, -0.542, -0.531, -0.519, -0.507, -0.494, -0.484, -0.476, -0.469,
     -0.463, -0.456, -0.449, -0.442, -0.435, -0.431, -0.429, -0.430, -0.435,
     -0.442, -0.452, -0.465, -0.479, -0.493, -0.506, -0.517, -0.526, -0.535,
     -0.548, -0.567, -0.592, -0.622, -0.655, -0.690, -0.728, -0.764, -0.795,
     -0.815, -0.823, -0.821])

s_y1 = numpy.concatenate((s_x, s_x))[::2].reshape((-1, 1))
s_y2 = numpy.concatenate((s_x, s_x[::-1]))[::2].reshape((-1, 1))
sz = s_y1.shape[0]

for gamma in [0., .1, 1.]:
    alignment, sim = metrics.soft_dtw_alignment(s_y1, s_y2, gamma=gamma)

    plt.figure(figsize=(8, 8))

    # definitions for the axes
    left, bottom = 0.01, 0.1
    w_ts = h_ts = 0.2
    left_h = left + w_ts + 0.02
    width = height = 0.65
    bottom_h = bottom + height + 0.02

    rect_s_y = [left, bottom, w_ts, height]
    rect_gram = [left_h, bottom, width, height]
    rect_s_x = [left_h, bottom_h, width, h_ts]

    ax_gram = plt.axes(rect_gram)
    ax_s_x = plt.axes(rect_s_x)
    ax_s_y = plt.axes(rect_s_y)

    mat = cdist(s_y1, s_y2)

    ax_gram.imshow(alignment, origin='lower')
    ax_gram.axis("off")
    ax_gram.autoscale(False)
    plt.suptitle("$\\gamma={:.1f}$".format(gamma), fontsize=24)

    ax_s_x.plot(numpy.arange(sz), s_y2, "b-", linewidth=3.)
    ax_s_x.axis("off")
    ax_s_x.set_xlim((0, sz - 1))

    ax_s_y.plot(- s_y1, numpy.arange(sz), "b-", linewidth=3.)
    ax_s_y.axis("off")
    ax_s_y.set_ylim((0, sz - 1))

    plt.show()





Total running time of the script: (0 minutes 1.152 seconds)



Download Jupyter notebook: plot_softdtw_path.ipynb




Download Python source code: plot_softdtw_path.py
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DTW computation with a custom distance metric

This example illustrates how to use the DTW computation of the optimal
alignment path [1] on an user-defined distance matrix using
dtw_path_from_metric().

Left is the DTW of two angular time series using the length of the arc on the
unit circle as a distance metric [2] and right is the DTW of two
multidimensional boolean time series using hamming distance [3].

The images represent cost matrices, that is, on the left the length of the arc
between each pair of angles on the unit circle and on the right the hamming
distances between the multidimensional boolean arrays. In both cases, the
corresponding time series are represented at the left and at the top of each
cost matrix.

The optimal path, that is the path that minimizes the total user-defined cost
from the first time point to the last one, is represented in white on the
image.



[1]
H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition”. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 26(1), 43-49 (1978).



[2]
Definition of the length of an arc on Wikipedia [https://en.wikipedia.org/wiki/Arc_(geometry)#Length_of_an_arc_of_a_circle].



[3]
See Hammig distance in Scipy’s documentation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.hamming.html].




	[image: plot dtw custom metric]

	[image: plot dtw custom metric]



/home/docs/checkouts/readthedocs.org/user_builds/tslearn/checkouts/latest/docs/examples/metrics/plot_dtw_custom_metric.py:156: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
  plt.tight_layout()











# Author: Romain Fayat
# License: BSD 3 clause
# sphinx_gallery_thumbnail_number = 2

import numpy as np
from numpy import pi
from sklearn.metrics import pairwise_distances
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap

from tslearn.generators import random_walks
from tslearn import metrics
from tslearn.preprocessing import TimeSeriesScalerMeanVariance

np.random.seed(0)
n_ts, sz = 2, 100


# Example 1 : Length of the arc between two angles on a circle
def arc_length(angle_1, angle_2, r=1.):
    """Length of the arc between two angles (in rad) on a circle of
    radius r.
    """
    # Compute the angle between the two inputs between 0 and 2*pi.
    theta = np.mod(angle_2 - angle_1, 2*pi)
    if theta > pi:
        theta = theta - 2 * pi
    # Return the length of the arc
    L = r * np.abs(theta)
    return(L)


dataset_1 = random_walks(n_ts=n_ts, sz=sz, d=1)
scaler = TimeSeriesScalerMeanVariance(mu=0., std=pi)  # Rescale the time series
dataset_scaled_1 = scaler.fit_transform(dataset_1)

# DTW using a function as the metric argument
path_1, sim_1 = metrics.dtw_path_from_metric(
    dataset_scaled_1[0], dataset_scaled_1[1], metric=arc_length
)

# Example 2 : Hamming distance between 2 multi-dimensional boolean time series
rw = random_walks(n_ts=n_ts, sz=sz, d=15, std=.3)
dataset_2 = np.mod(np.floor(rw), 4) == 0

# DTW using one of the options of sklearn.metrics.pairwise_distances
path_2, sim_2 = metrics.dtw_path_from_metric(
    dataset_2[0], dataset_2[1], metric="hamming"
)

# Plots
# Compute the distance matrices for the plots
distances_1 = pairwise_distances(
    dataset_scaled_1[0], dataset_scaled_1[1], metric=arc_length
)
distances_2 = pairwise_distances(dataset_2[0], dataset_2[1], metric="hamming")

# Definitions for the axes
left, bottom = 0.01, 0.1
w_ts = h_ts = 0.2
left_h = left + w_ts + 0.02
width = height = 0.65
bottom_h = bottom + height + 0.02

rect_s_y = [left, bottom, w_ts, height]
rect_dist = [left_h, bottom, width, height]
rect_s_x = [left_h, bottom_h, width, h_ts]

# Plot example 1
plt.figure(1, figsize=(6, 6))
ax_dist = plt.axes(rect_dist)
ax_s_x = plt.axes(rect_s_x)
ax_s_y = plt.axes(rect_s_y)

ax_dist.imshow(distances_1, origin='lower')
ax_dist.axis("off")
ax_dist.autoscale(False)
ax_dist.plot(*zip(*path_1), "w-", linewidth=3.)

ticks_location = [-pi, 0, pi]
ticks_labels = [r"$\bf-\pi$", r"$\bf0$", r"$\bf\pi$"]

ax_s_x.plot([0, sz - 1], [ticks_location]*2, "k--", alpha=.2)
ax_s_x.plot(np.arange(sz), dataset_scaled_1[1], "b-", linewidth=3.)
ax_s_x.set_xlim((0, sz - 1))
ax_s_x.axis("off")

ax_s_y.plot([ticks_location]*2, [0, sz - 1], "k--", alpha=.2)
ax_s_y.plot(-dataset_scaled_1[0], np.arange(sz), "b-", linewidth=3.)
ax_s_y.set_ylim((0, sz - 1))
ax_s_y.axis("off")

for loc, s in zip(ticks_location, ticks_labels):
    ax_s_x.text(0, loc, s, fontsize="large", color="grey",
                horizontalalignment="right", verticalalignment="center")
    ax_s_y.text(-loc, 0, s, fontsize="large", color="grey",
                horizontalalignment="center", verticalalignment="top")

# Plot example 2
plt.figure(2, figsize=(6, 6))
ax_dist = plt.axes(rect_dist)
ax_s_x = plt.axes(rect_s_x)
ax_s_y = plt.axes(rect_s_y)

ax_dist.imshow(distances_2, origin='lower')
ax_dist.axis("off")
ax_dist.autoscale(False)
ax_dist.plot(*zip(*path_2), "w-", linewidth=3.)

colors = [(1, 1, 1), (0, 0, 1)]  # White -> Blue
cmap_name = 'white_blue'
cm = LinearSegmentedColormap.from_list(cmap_name, colors, N=2)

ax_s_x.imshow(dataset_2[1].T, aspect="auto", cmap=cm)
ax_s_x.axis("off")

ax_s_y.imshow(np.flip(dataset_2[0], axis=1), aspect="auto", cmap=cm)
ax_s_y.axis("off")

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 0.636 seconds)



Download Jupyter notebook: plot_dtw_custom_metric.ipynb




Download Python source code: plot_dtw_custom_metric.py
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[image: ]Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier

  Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier
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  1-NN with SAX + MINDIST
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k-NN search

This example performs a \(k\)-Nearest-Neighbor search in a database of time
series using DTW as a base metric.

To do so, we use the tslearn.neighbors.KNeighborsTimeSeries class
which provides utilities for the \(k\)-Nearest-Neighbor algorithm
for time series.

[1] Wikipedia entry for the k-nearest neighbors algorithm [https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm]

[2] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition”. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1), 43-49 (1978).

[image: Queries (in black) and their nearest neighbors (red)]# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt

from tslearn.neighbors import KNeighborsTimeSeries
from tslearn.datasets import CachedDatasets

seed = 0
numpy.random.seed(seed)
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")

n_queries = 2
n_neighbors = 4

knn = KNeighborsTimeSeries(n_neighbors=n_neighbors)
knn.fit(X_train)
ind = knn.kneighbors(X_test[:n_queries], return_distance=False)

plt.figure()
for idx_ts in range(n_queries):
    plt.subplot(n_neighbors + 1, n_queries, idx_ts + 1)
    plt.plot(X_test[idx_ts].ravel(), "k-")
    plt.xticks([])
    for rank_nn in range(n_neighbors):
        plt.subplot(n_neighbors + 1, n_queries,
                    idx_ts + (n_queries * (rank_nn + 1)) + 1)
        plt.plot(X_train[ind[idx_ts, rank_nn]].ravel(), "r-")
        plt.xticks([])


plt.suptitle("Queries (in black) and their nearest neighbors (red)")
plt.show()





Total running time of the script: (0 minutes 1.940 seconds)



Download Jupyter notebook: plot_knn_search.ipynb




Download Python source code: plot_knn_search.py
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Nearest neighbors

This example illustrates the use of nearest neighbor methods for database
search and classification tasks.

The three-nearest neighbors of the time series from a test set are computed.
Then, the predictive performance of a three-nearest neighbors classifier [1] is
computed with three different metrics: Dynamic Time Warping [2], Euclidean
distance and SAX-MINDIST [3].

[1] Wikipedia entry for the k-nearest neighbors algorithm [https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm]

[2] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition”. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1), 43-49 (1978).

[3] J. Lin, E. Keogh, L. Wei and S. Lonardi, “Experiencing SAX: a novel
symbolic representation of time series”. Data Mining and Knowledge Discovery,
15(2), 107-144 (2007).

1. Nearest neighbour search
Computed nearest neighbor indices (wrt DTW)
 [[10 12  2]
 [ 0 13  5]
 [ 0  1 13]
 [ 0 11  5]
 [16 18 12]
 [ 3 17  9]
 [12  2 16]
 [ 7  3 17]
 [12  2 10]
 [12  2 18]
 [12  8  2]
 [ 3 17  7]
 [18 19  2]
 [ 0 17 13]
 [ 9  3  7]
 [12  2  8]
 [ 3  7  9]
 [ 0  1 13]
 [18 10  2]
 [10 12  2]]
First nearest neighbor class: [0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0]

2. Nearest neighbor classification using DTW
Correct classification rate: 1.0

3. Nearest neighbor classification using L2
Correct classification rate: 1.0

4. Nearest neighbor classification using SAX+MINDIST
Correct classification rate: 0.5











# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
from sklearn.metrics import accuracy_score

from tslearn.generators import random_walk_blobs
from tslearn.preprocessing import TimeSeriesScalerMinMax, \
    TimeSeriesScalerMeanVariance
from tslearn.neighbors import KNeighborsTimeSeriesClassifier, \
    KNeighborsTimeSeries

numpy.random.seed(0)
n_ts_per_blob, sz, d, n_blobs = 20, 100, 1, 2

# Prepare data
X, y = random_walk_blobs(n_ts_per_blob=n_ts_per_blob,
                         sz=sz,
                         d=d,
                         n_blobs=n_blobs)
scaler = TimeSeriesScalerMinMax(value_range=(0., 1.))  # Rescale time series
X_scaled = scaler.fit_transform(X)

indices_shuffle = numpy.random.permutation(n_ts_per_blob * n_blobs)
X_shuffle = X_scaled[indices_shuffle]
y_shuffle = y[indices_shuffle]

X_train = X_shuffle[:n_ts_per_blob * n_blobs // 2]
X_test = X_shuffle[n_ts_per_blob * n_blobs // 2:]
y_train = y_shuffle[:n_ts_per_blob * n_blobs // 2]
y_test = y_shuffle[n_ts_per_blob * n_blobs // 2:]

# Nearest neighbor search
knn = KNeighborsTimeSeries(n_neighbors=3, metric="dtw")
knn.fit(X_train, y_train)
dists, ind = knn.kneighbors(X_test)
print("1. Nearest neighbour search")
print("Computed nearest neighbor indices (wrt DTW)\n", ind)
print("First nearest neighbor class:", y_test[ind[:, 0]])

# Nearest neighbor classification
knn_clf = KNeighborsTimeSeriesClassifier(n_neighbors=3, metric="dtw")
knn_clf.fit(X_train, y_train)
predicted_labels = knn_clf.predict(X_test)
print("\n2. Nearest neighbor classification using DTW")
print("Correct classification rate:", accuracy_score(y_test, predicted_labels))

# Nearest neighbor classification with a different metric (Euclidean distance)
knn_clf = KNeighborsTimeSeriesClassifier(n_neighbors=3, metric="euclidean")
knn_clf.fit(X_train, y_train)
predicted_labels = knn_clf.predict(X_test)
print("\n3. Nearest neighbor classification using L2")
print("Correct classification rate:", accuracy_score(y_test, predicted_labels))

# Nearest neighbor classification based on SAX representation
metric_params = {'n_segments': 10, 'alphabet_size_avg': 5}
knn_clf = KNeighborsTimeSeriesClassifier(n_neighbors=3, metric="sax",
                                         metric_params=metric_params)
knn_clf.fit(X_train, y_train)
predicted_labels = knn_clf.predict(X_test)
print("\n4. Nearest neighbor classification using SAX+MINDIST")
print("Correct classification rate:", accuracy_score(y_test, predicted_labels))





Total running time of the script: (0 minutes 2.766 seconds)



Download Jupyter notebook: plot_neighbors.ipynb




Download Python source code: plot_neighbors.py
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Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier

In this example, we demonstrate how it is possible to use the different
algorithms of tslearn in combination with sklearn utilities, such as
the sklearn.pipeline.Pipeline and sklearn.model_selection.GridSearchCV.
In this specific example, we will tune two of the hyper-parameters
of a KNeighborsTimeSeriesClassifier.

[image: The timeseries in the dataset]Performing hyper-parameter tuning of KNN classifier... Done!

Got the following accuracies on the test set for each fold:
|n_neighbors |  weights   |score_fold_1|score_fold_2|score_fold_3|
-----------------------------------------------------------------
|           5|     uniform|     0.64706|     0.82353|      0.6875|
|           5|    distance|     0.70588|     0.88235|      0.8125|
|          25|     uniform|     0.64706|     0.64706|       0.625|
|          25|    distance|     0.82353|     0.76471|      0.8125|

Best parameter combination:
weights=distance, n_neighbors=5











# Author: Gilles Vandewiele
# License: BSD 3 clause

from tslearn.neighbors import KNeighborsTimeSeriesClassifier
from tslearn.preprocessing import TimeSeriesScalerMinMax
from tslearn.datasets import CachedDatasets

from sklearn.model_selection import GridSearchCV, StratifiedKFold
from sklearn.pipeline import Pipeline

import numpy as np

import matplotlib.pyplot as plt

# Our pipeline consists of two phases. First, data will be normalized using
# min-max normalization. Afterwards, it is fed to a KNN classifier. For the
# KNN classifier, we tune the n_neighbors and weights hyper-parameters.
n_splits = 3
pipeline = GridSearchCV(
    Pipeline([
            ('normalize', TimeSeriesScalerMinMax()),
            ('knn', KNeighborsTimeSeriesClassifier())
    ]),
    {'knn__n_neighbors': [5, 25], 'knn__weights': ['uniform', 'distance']},
    cv=StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42)
)

X_train, y_train, _, _ = CachedDatasets().load_dataset("Trace")

# Keep only timeseries of class 1, 2, 3
X_train = X_train[y_train > 0]
y_train = y_train[y_train > 0]

# Keep only the first 50 timeseries of both train and
# retain only a small amount of each of the timeseries
X_train, y_train = X_train[:50, 50:150], y_train[:50]

# Plot our timeseries
colors = ['g', 'b', 'r']
plt.figure()
for ts, label in zip(X_train, y_train):
    plt.plot(ts, c=colors[label - 2], alpha=0.5)
plt.title('The timeseries in the dataset')
plt.tight_layout()
plt.show()

# Fit our pipeline
print(end='Performing hyper-parameter tuning of KNN classifier... ')
pipeline.fit(X_train, y_train)
results = pipeline.cv_results_

# Print each possible configuration parameter and the out-of-fold accuracies
print('Done!')
print()
print('Got the following accuracies on the test set for each fold:')

header_str = '|'
columns = ['n_neighbors', 'weights']
columns += ['score_fold_{}'.format(i + 1) for i in range(n_splits)]
for col in columns:
    header_str += '{:^12}|'.format(col)
print(header_str)
print('-'*(len(columns) * 13))

for i in range(len(results['params'])):
    s = '|'
    s += '{:>12}|'.format(results['params'][i]['knn__n_neighbors'])
    s += '{:>12}|'.format(results['params'][i]['knn__weights'])
    for k in range(n_splits):
        score = results['split{}_test_score'.format(k)][i]
        score = np.around(score, 5)
        s += '{:>12}|'.format(score)
    print(s.strip())

best_comb = np.argmax(results['mean_test_score'])
best_params = results['params'][best_comb]

print()
print('Best parameter combination:')
print('weights={}, n_neighbors={}'.format(best_params['knn__weights'],
                                          best_params['knn__n_neighbors']))





Total running time of the script: (0 minutes 12.886 seconds)



Download Jupyter notebook: plot_knnts_sklearn.ipynb




Download Python source code: plot_knnts_sklearn.py
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1-NN with SAX + MINDIST

This example presents a comparison between k-Nearest Neighbor runs with k=1.
It compares the use of:
* MINDIST (see [1]) on SAX representations of the data.
* Euclidean distance on the raw values of the time series.

The comparison is based on test accuracy using several benchmark datasets.


	[1] Lin, Jessica, et al. “Experiencing SAX: a novel symbolic
	representation of time series.” Data Mining and knowledge
discovery 15.2 (2007): 107-144.





|      dataset       | sax error  |  sax time  | eucl error | eucl time  |
--------------------------------------------------------------------------
|    SyntheticControl|        0.03|     3.48727|        0.12|     1.03348|
|            GunPoint|     0.20667|     1.88121|     0.08667|     0.73752|
|            FaceFour|     0.14773|     2.17096|     0.21591|     0.90353|
|          Lightning2|     0.19672|     3.92335|      0.2459|     1.71236|
|          Lightning7|     0.46575|     2.47131|     0.42466|     1.06485|
|              ECG200|        0.12|     1.26332|        0.12|     0.50789|
|               Plane|     0.04762|     1.89187|      0.0381|     0.74948|
|                 Car|        0.35|     3.61388|     0.26667|     1.54936|
|                Beef|     0.53333|     1.61011|     0.33333|     0.65551|
|              Coffee|     0.46429|     0.87851|         0.0|     0.37575|
|            OliveOil|     0.83333|     1.79912|     0.13333|     0.77401|
--------------------------------------------------------------------------











# Author: Gilles Vandewiele
# License: BSD 3 clause

import warnings
import time

import numpy
import matplotlib.pyplot as plt
from scipy.stats import norm

from tslearn.datasets import UCR_UEA_datasets
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.neighbors import KNeighborsTimeSeriesClassifier

from sklearn.base import clone
from sklearn.metrics import pairwise_distances, accuracy_score
from sklearn.neighbors import KNeighborsClassifier


warnings.filterwarnings('ignore')


def print_table(accuracies, times):
    """Utility function to pretty print the obtained accuracies"""
    header_str = '|'
    header_str += '{:^20}|'.format('dataset')
    columns = ['sax error', 'sax time', 'eucl error', 'eucl time']
    for col in columns:
        header_str += '{:^12}|'.format(col)
    print(header_str)
    print('-'*(len(columns) * 13 + 22))

    for dataset in accuracies:
        acc_sax, acc_euclidean = accuracies[dataset]
        time_sax, time_euclidean = times[dataset]
        sax_error = numpy.around(1 - acc_sax, 5)
        eucl_error = numpy.around(1 - acc_euclidean, 5)
        time_sax = numpy.around(time_sax, 5)
        time_euclidean = numpy.around(time_euclidean, 5)
        s = '|'
        s += '{:>20}|'.format(dataset)
        s += '{:>12}|'.format(sax_error)
        s += '{:>12}|'.format(time_sax)
        s += '{:>12}|'.format(eucl_error)
        s += '{:>12}|'.format(time_euclidean)
        print(s.strip())

    print('-'*(len(columns) * 13 + 22))


# Set seed
numpy.random.seed(0)

# Defining dataset and the number of segments
data_loader = UCR_UEA_datasets()
datasets = [
    ('SyntheticControl', 16),
    ('GunPoint', 64),
    ('FaceFour', 128),
    ('Lightning2', 256),
    ('Lightning7', 128),
    ('ECG200', 32),
    ('Plane', 64),
    ('Car', 256),
    ('Beef', 128),
    ('Coffee', 128),
    ('OliveOil', 256)
]

# We will compare the accuracies & execution times of 1-NN using:
# (i) MINDIST on SAX representations, and
# (ii) euclidean distance on raw values
knn_sax = KNeighborsTimeSeriesClassifier(n_neighbors=1, metric='sax')
knn_eucl = KNeighborsTimeSeriesClassifier(n_neighbors=1, metric='euclidean')

accuracies = {}
times = {}
for dataset, w in datasets:
    X_train, y_train, X_test, y_test = data_loader.load_dataset(dataset)

    ts_scaler = TimeSeriesScalerMeanVariance()
    X_train = ts_scaler.fit_transform(X_train)
    X_test = ts_scaler.fit_transform(X_test)

    # Fit 1-NN using SAX representation & MINDIST
    metric_params = {'n_segments': w, 'alphabet_size_avg': 10}
    knn_sax = clone(knn_sax).set_params(metric_params=metric_params)
    start = time.time()
    knn_sax.fit(X_train, y_train)
    acc_sax = accuracy_score(y_test, knn_sax.predict(X_test))
    time_sax = time.time() - start

    # Fit 1-NN using euclidean distance on raw values
    start = time.time()
    knn_eucl.fit(X_train, y_train)
    acc_euclidean = accuracy_score(y_test, knn_eucl.predict(X_test))
    time_euclidean = time.time() - start

    accuracies[dataset] = (acc_sax, acc_euclidean)
    times[dataset] = (time_sax, time_euclidean)

print_table(accuracies, times)





Total running time of the script: (0 minutes 58.611 seconds)



Download Jupyter notebook: plot_sax_mindist_knn.ipynb




Download Python source code: plot_sax_mindist_knn.py
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Clustering and Barycenters
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KShape

This example uses the KShape clustering method [1] that is based on
cross-correlation to cluster time series.

[1] J. Paparrizos & L. Gravano. k-Shape: Efficient and Accurate Clustering of Time Series. SIGMOD 2015. pp. 1855-1870.

[image: Cluster 1, Cluster 2, Cluster 3]0.008 --> 0.006 --> 0.004 --> 0.004 --> 0.004 --> 0.003 --> 0.003 --> 0.003 --> 0.003 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 --> 0.002 -->











# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt

from tslearn.clustering import KShape
from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMeanVariance

seed = 0
numpy.random.seed(seed)
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")
# Keep first 3 classes and 50 first time series
X_train = X_train[y_train < 4]
X_train = X_train[:50]
numpy.random.shuffle(X_train)
# For this method to operate properly, prior scaling is required
X_train = TimeSeriesScalerMeanVariance().fit_transform(X_train)
sz = X_train.shape[1]

# kShape clustering
ks = KShape(n_clusters=3, verbose=True, random_state=seed)
y_pred = ks.fit_predict(X_train)

plt.figure()
for yi in range(3):
    plt.subplot(3, 1, 1 + yi)
    for xx in X_train[y_pred == yi]:
        plt.plot(xx.ravel(), "k-", alpha=.2)
    plt.plot(ks.cluster_centers_[yi].ravel(), "r-")
    plt.xlim(0, sz)
    plt.ylim(-4, 4)
    plt.title("Cluster %d" % (yi + 1))

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 26.418 seconds)



Download Jupyter notebook: plot_kshape.ipynb




Download Python source code: plot_kshape.py
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Kernel k-means

This example uses Global Alignment kernel (GAK, [1]) at the core of a kernel
\(k\)-means algorithm [2] to perform time series clustering.

Note that, contrary to \(k\)-means, a centroid cannot be computed when
using kernel \(k\)-means. However, one can still report cluster
assignments, which is what is provided here: each subfigure represents the set
of time series from the training set that were assigned to the considered
cluster.

[1] M. Cuturi, “Fast global alignment kernels,” ICML 2011.

[2] I. S. Dhillon, Y. Guan, B. Kulis. Kernel k-means, Spectral Clustering and Normalized Cuts. KDD 2004.

[image: Cluster 1, Cluster 2, Cluster 3][Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.5s
[Parallel(n_jobs=1)]: Done 199 tasks      | elapsed:    1.2s
[Parallel(n_jobs=1)]: Done 449 tasks      | elapsed:    2.3s
[Parallel(n_jobs=1)]: Done 799 tasks      | elapsed:    3.8s
[Parallel(n_jobs=1)]: Done 1249 tasks      | elapsed:    5.7s
Init 1
80.948 --> 70.106 --> 66.011 --> 63.422 --> 59.720 --> 58.005 --> 57.563 --> 57.563 -->
Init 2
80.519 --> 70.023 --> 66.522 --> 65.914 --> 65.914 -->
Init 3
80.374 --> 67.064 --> 62.859 --> 62.220 --> 59.391 --> 59.391 -->
Init 4
77.700 --> 69.585 --> 67.474 --> 67.022 --> 66.104 --> 65.075 --> 63.516 --> 62.861 --> 62.410 --> 61.166 --> 59.759 --> 59.759 -->
Init 5
79.246 --> 66.190 --> 63.040 --> 63.040 -->
Init 6
78.590 --> 68.315 --> 66.321 --> 65.633 --> 63.898 --> 63.898 -->
Init 7
75.299 --> 63.203 --> 59.963 --> 57.563 --> 57.563 -->
Init 8
76.876 --> 67.042 --> 66.764 --> 66.764 -->
Init 9
81.317 --> 69.313 --> 63.927 --> 61.124 --> 59.391 --> 59.391 -->
Init 10
79.317 --> 72.390 --> 70.197 --> 70.218 --> 70.218 -->
Init 11
78.202 --> 66.888 --> 60.961 --> 57.946 --> 57.387 --> 57.387 -->
Init 12
78.194 --> 67.992 --> 65.263 --> 63.436 --> 61.177 --> 57.799 --> 57.387 --> 57.387 -->
Init 13
77.553 --> 64.028 --> 64.008 --> 64.008 -->
Init 14
77.853 --> 62.815 --> 57.799 --> 57.387 --> 57.387 -->
Init 15
81.746 --> 67.617 --> 63.332 --> 62.827 --> 62.234 --> 58.470 --> 57.387 --> 57.387 -->
Init 16
78.934 --> 69.153 --> 65.466 --> 63.619 --> 63.619 -->
Init 17
78.303 --> 65.546 --> 63.619 --> 63.619 -->
Init 18
77.760 --> 67.020 --> 66.729 --> 65.900 --> 65.900 -->
Init 19
79.795 --> 70.429 --> 69.098 --> 69.098 -->
Init 20
79.419 --> 67.908 --> 65.330 --> 63.388 --> 61.019 --> 58.186 --> 57.387 --> 57.387 -->











# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt

from tslearn.clustering import KernelKMeans
from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMeanVariance

seed = 0
numpy.random.seed(seed)
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")
# Keep first 3 classes
X_train = X_train[y_train < 4]
numpy.random.shuffle(X_train)
# Keep only 50 time series
X_train = TimeSeriesScalerMeanVariance().fit_transform(X_train[:50])
sz = X_train.shape[1]

gak_km = KernelKMeans(n_clusters=3,
                      kernel="gak",
                      kernel_params={"sigma": "auto"},
                      n_init=20,
                      verbose=True,
                      random_state=seed)
y_pred = gak_km.fit_predict(X_train)

plt.figure()
for yi in range(3):
    plt.subplot(3, 1, 1 + yi)
    for xx in X_train[y_pred == yi]:
        plt.plot(xx.ravel(), "k-", alpha=.2)
    plt.xlim(0, sz)
    plt.ylim(-4, 4)
    plt.title("Cluster %d" % (yi + 1))

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 7.585 seconds)



Download Jupyter notebook: plot_kernel_kmeans.ipynb




Download Python source code: plot_kernel_kmeans.py
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Barycenters

This example shows three methods to compute barycenters of time series.
For an overview over the available methods see the tslearn.barycenters
module.

tslearn provides three methods for calculating barycenters for a given set of
time series:


	Euclidean barycenter is simply the arithmetic mean for
each individual point in time, minimizing the summed euclidean distance
for each of them. As can be seen below, it is very different from the
DTW-based methods and may often be inappropriate. However, it is the
fastest of the methods shown.


	DTW Barycenter Averaging (DBA) is an iteratively refined barycenter,
starting out with a (potentially) bad candidate and improving it
until convergence criteria are met. The optimization can be accomplished
with (a) expectation-maximization [1] and (b) stochastic subgradient
descent [2]. Empirically, the latter “is [often] more stable and finds better
solutions in shorter time” [2].


	Soft-DTW barycenter uses a differentiable loss function to iteratively
find a barycenter [3]. The method itself and the parameter
\(\gamma=1.0\) is described in more detail in the section on
DTW. There is also a dedicated
example
available.




[1] F. Petitjean, A. Ketterlin & P. Gancarski. A global averaging method for
dynamic time warping, with applications to clustering. Pattern Recognition,
Elsevier, 2011, Vol. 44, Num. 3, pp. 678-693.

[2] D. Schultz & B. Jain. Nonsmooth Analysis and Subgradient Methods for
Averaging in Dynamic Time Warping Spaces. Pattern Recognition, 74, 340-358.

[3] M. Cuturi & M. Blondel. Soft-DTW: a Differentiable Loss Function for
Time-Series. ICML 2017.

[image: Euclidean barycenter, DBA (vectorized version of Petitjean's EM), DBA (subgradient descent approach), Soft-DTW barycenter ($\gamma$=1.0)]# Author: Romain Tavenard, Felix Divo
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt

from tslearn.barycenters import \
    euclidean_barycenter, \
    dtw_barycenter_averaging, \
    dtw_barycenter_averaging_subgradient, \
    softdtw_barycenter
from tslearn.datasets import CachedDatasets

# fetch the example data set
numpy.random.seed(0)
X_train, y_train, _, _ = CachedDatasets().load_dataset("Trace")
X = X_train[y_train == 2]
length_of_sequence = X.shape[1]


def plot_helper(barycenter):
    # plot all points of the data set
    for series in X:
        plt.plot(series.ravel(), "k-", alpha=.2)
    # plot the given barycenter of them
    plt.plot(barycenter.ravel(), "r-", linewidth=2)


# plot the four variants with the same number of iterations and a tolerance of
# 1e-3 where applicable
ax1 = plt.subplot(4, 1, 1)
plt.title("Euclidean barycenter")
plot_helper(euclidean_barycenter(X))

plt.subplot(4, 1, 2, sharex=ax1)
plt.title("DBA (vectorized version of Petitjean's EM)")
plot_helper(dtw_barycenter_averaging(X, max_iter=50, tol=1e-3))

plt.subplot(4, 1, 3, sharex=ax1)
plt.title("DBA (subgradient descent approach)")
plot_helper(dtw_barycenter_averaging_subgradient(X, max_iter=50, tol=1e-3))

plt.subplot(4, 1, 4, sharex=ax1)
plt.title("Soft-DTW barycenter ($\gamma$=1.0)")
plot_helper(softdtw_barycenter(X, gamma=1., max_iter=50, tol=1e-3))

# clip the axes for better readability
ax1.set_xlim([0, length_of_sequence])

# show the plot(s)
plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 11.128 seconds)



Download Jupyter notebook: plot_barycenters.ipynb




Download Python source code: plot_barycenters.py
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Soft-DTW weighted barycenters

This example presents the weighted Soft-DTW time series barycenter method.

Soft-DTW [1] is a differentiable loss function for Dynamic Time Warping,
allowing for the use of gradient-based algorithms. The barycenter corresponds
to the time series that minimizes the sum of the distances between that time
series and all the time series from a dataset. It is thus an optimization
problem and having a differentiable loss function makes find the solution much
easier.

In this example, we consider four time series \(X_0, X_1, X_2\) and
\(X_3\) from four different classes in the Trace dataset. We compute
the barycenters for different sets of weights and plot them. The closer to a
time series the barycenter is, the higher the weight for this time series
is.

[1] M. Cuturi and M. Blondel, “Soft-DTW: a Differentiable Loss Function for
Time-Series”. International Conference on Machine Learning, 2017.

[image: plot barycenter interpolate]# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt
import matplotlib.colors

from tslearn.preprocessing import TimeSeriesScalerMinMax
from tslearn.barycenters import softdtw_barycenter
from tslearn.datasets import CachedDatasets


def row_col(position, n_cols=5):
    idx_row = (position - 1) // n_cols
    idx_col = position - n_cols * idx_row - 1
    return idx_row, idx_col


def get_color(weights):
    baselines = numpy.zeros((4, 3))
    weights = numpy.array(weights).reshape(1, 4)
    for i, c in enumerate(["r", "g", "b", "y"]):
        baselines[i] = matplotlib.colors.ColorConverter().to_rgb(c)
    return numpy.dot(weights, baselines).ravel()


numpy.random.seed(0)
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")
X_out = numpy.empty((4, X_train.shape[1], X_train.shape[2]))

plt.figure()
for i in range(4):
    X_out[i] = X_train[y_train == (i + 1)][0]
X_out = TimeSeriesScalerMinMax().fit_transform(X_out)

for i, pos in enumerate([1, 5, 21, 25]):
    plt.subplot(5, 5, pos)
    w = [0.] * 4
    w[i] = 1.
    plt.plot(X_out[i].ravel(),
             color=matplotlib.colors.rgb2hex(get_color(w)),
             linewidth=2)
    plt.text(X_out[i].shape[0], 0., "$X_%d$" % i,
             horizontalalignment="right",
             verticalalignment="baseline",
             fontsize=24)
    plt.xticks([])
    plt.yticks([])

for pos in range(2, 25):
    if pos in [1, 5, 21, 25]:
        continue
    plt.subplot(5, 5, pos)
    idxr, idxc = row_col(pos, 5)
    w = numpy.array([0.] * 4)
    w[0] = (4 - idxr) * (4 - idxc) / 16
    w[1] = (4 - idxr) * idxc / 16
    w[2] = idxr * (4 - idxc) / 16
    w[3] = idxr * idxc / 16
    plt.plot(softdtw_barycenter(X=X_out, weights=w).ravel(),
             color=matplotlib.colors.rgb2hex(get_color(w)),
             linewidth=2)
    plt.xticks([])
    plt.yticks([])


plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 8.508 seconds)



Download Jupyter notebook: plot_barycenter_interpolate.ipynb




Download Python source code: plot_barycenter_interpolate.py
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k-means

This example uses \(k\)-means clustering for time series. Three variants of
the algorithm are available: standard
Euclidean \(k\)-means, DBA-\(k\)-means (for DTW Barycenter
Averaging [1])
and Soft-DTW \(k\)-means [2].

In the figure below, each row corresponds to the result of a different
clustering. In a row, each sub-figure corresponds to a cluster.
It represents the set
of time series from the training set that were assigned to the considered
cluster (in black) as well as the barycenter of the cluster (in red).


A note on pre-processing

In this example, time series are preprocessed using
TimeSeriesScalerMeanVariance. This scaler is such that each output time
series has zero mean and unit variance.
The assumption here is that the range of a given time series is uninformative
and one only wants to compare shapes in an amplitude-invariant manner (when
time series are multivariate, this also rescales all modalities such that there
will not be a single modality responsible for a large part of the variance).
This means that one cannot scale barycenters back to data range because each
time series is scaled independently and there is hence no such thing as an
overall data range.

[1] F. Petitjean, A. Ketterlin & P. Gancarski. A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, Elsevier, 2011, Vol. 44, Num. 3, pp. 678-693
[2] M. Cuturi, M. Blondel “Soft-DTW: a Differentiable Loss Function for Time-Series,” ICML 2017.

[image: Euclidean $k$-means, DBA $k$-means, Soft-DTW $k$-means]Euclidean k-means
15.795 --> 7.716 --> 7.716 -->
DBA k-means
Init 1
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
0.637 --> [Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
0.458 --> [Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
0.458 -->
Init 2
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
0.826 --> [Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
0.525 --> [Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
0.477 --> [Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
0.472 --> [Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
0.472 -->
[Parallel(n_jobs=1)]: Done  49 tasks      | elapsed:    0.0s
Soft-DTW k-means
0.472 --> 0.144 --> 0.142 --> 0.143 --> 0.142 --> 0.143 --> 0.142 --> 0.143 --> 0.142 --> 0.142 --> 0.142 --> 0.142 --> 0.142 --> 0.142 --> 0.142 --> 0.142 --> 0.142 --> 0.142 --> 0.142 --> 0.142 --> 0.142 -->











# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt

from tslearn.clustering import TimeSeriesKMeans
from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMeanVariance, \
    TimeSeriesResampler

seed = 0
numpy.random.seed(seed)
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")
X_train = X_train[y_train < 4]  # Keep first 3 classes
numpy.random.shuffle(X_train)
# Keep only 50 time series
X_train = TimeSeriesScalerMeanVariance().fit_transform(X_train[:50])
# Make time series shorter
X_train = TimeSeriesResampler(sz=40).fit_transform(X_train)
sz = X_train.shape[1]

# Euclidean k-means
print("Euclidean k-means")
km = TimeSeriesKMeans(n_clusters=3, verbose=True, random_state=seed)
y_pred = km.fit_predict(X_train)

plt.figure()
for yi in range(3):
    plt.subplot(3, 3, yi + 1)
    for xx in X_train[y_pred == yi]:
        plt.plot(xx.ravel(), "k-", alpha=.2)
    plt.plot(km.cluster_centers_[yi].ravel(), "r-")
    plt.xlim(0, sz)
    plt.ylim(-4, 4)
    plt.text(0.55, 0.85,'Cluster %d' % (yi + 1),
             transform=plt.gca().transAxes)
    if yi == 1:
        plt.title("Euclidean $k$-means")

# DBA-k-means
print("DBA k-means")
dba_km = TimeSeriesKMeans(n_clusters=3,
                          n_init=2,
                          metric="dtw",
                          verbose=True,
                          max_iter_barycenter=10,
                          random_state=seed)
y_pred = dba_km.fit_predict(X_train)

for yi in range(3):
    plt.subplot(3, 3, 4 + yi)
    for xx in X_train[y_pred == yi]:
        plt.plot(xx.ravel(), "k-", alpha=.2)
    plt.plot(dba_km.cluster_centers_[yi].ravel(), "r-")
    plt.xlim(0, sz)
    plt.ylim(-4, 4)
    plt.text(0.55, 0.85,'Cluster %d' % (yi + 1),
             transform=plt.gca().transAxes)
    if yi == 1:
        plt.title("DBA $k$-means")

# Soft-DTW-k-means
print("Soft-DTW k-means")
sdtw_km = TimeSeriesKMeans(n_clusters=3,
                           metric="softdtw",
                           metric_params={"gamma": .01},
                           verbose=True,
                           random_state=seed)
y_pred = sdtw_km.fit_predict(X_train)

for yi in range(3):
    plt.subplot(3, 3, 7 + yi)
    for xx in X_train[y_pred == yi]:
        plt.plot(xx.ravel(), "k-", alpha=.2)
    plt.plot(sdtw_km.cluster_centers_[yi].ravel(), "r-")
    plt.xlim(0, sz)
    plt.ylim(-4, 4)
    plt.text(0.55, 0.85,'Cluster %d' % (yi + 1),
             transform=plt.gca().transAxes)
    if yi == 1:
        plt.title("Soft-DTW $k$-means")

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 29.845 seconds)



Download Jupyter notebook: plot_kmeans.ipynb




Download Python source code: plot_kmeans.py
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SVM and GAK

This example illustrates the use of the global alignment kernel (GAK) for
support vector classification.

This metric is defined in the tslearn.metrics module and
explained in details in [1].

In this example, a TimeSeriesSVC model that uses GAK as kernel is fit and the
support vectors for each class are reported.

[1] M. Cuturi, “Fast global alignment kernels,” ICML 2011.

[image: Support vectors for class 1, Support vectors for class 2, Support vectors for class 3, Support vectors for class 4]Correct classification rate: 1.0











# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt

from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMinMax
from tslearn.svm import TimeSeriesSVC

numpy.random.seed(0)
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")
X_train = TimeSeriesScalerMinMax().fit_transform(X_train)
X_test = TimeSeriesScalerMinMax().fit_transform(X_test)

clf = TimeSeriesSVC(kernel="gak", gamma=.1)
clf.fit(X_train, y_train)
print("Correct classification rate:", clf.score(X_test, y_test))

n_classes = len(set(y_train))

plt.figure()
support_vectors = clf.support_vectors_
for i, cl in enumerate(set(y_train)):
    plt.subplot(n_classes, 1, i + 1)
    plt.title("Support vectors for class %d" % cl)
    for ts in support_vectors[i]:
        plt.plot(ts.ravel())

plt.tight_layout()
plt.show()





Total running time of the script: (1 minutes 8.057 seconds)



Download Jupyter notebook: plot_svm.ipynb




Download Python source code: plot_svm.py
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Learning Shapelets

This example illustrates how the “Learning Shapelets” method can quickly
find a set of shapelets that results in excellent predictive performance
when used for a shapelet transform.

More information on the method can be found at:
http://fs.ismll.de/publicspace/LearningShapelets/.


	[image: 4 shapelets of size 27]

	[image: Evolution of cross-entropy loss during training]



Correct classification rate: 1.0











# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
from sklearn.metrics import accuracy_score
import tensorflow as tf
import matplotlib.pyplot as plt

from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMinMax
from tslearn.shapelets import LearningShapelets, \
    grabocka_params_to_shapelet_size_dict
from tslearn.utils import ts_size

# Set seed for determinism
numpy.random.seed(0)

# Load the Trace dataset
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")

# Normalize each of the timeseries in the Trace dataset
X_train = TimeSeriesScalerMinMax().fit_transform(X_train)
X_test = TimeSeriesScalerMinMax().fit_transform(X_test)

# Get statistics of the dataset
n_ts, ts_sz = X_train.shape[:2]
n_classes = len(set(y_train))

# Set the number of shapelets per size as done in the original paper
shapelet_sizes = grabocka_params_to_shapelet_size_dict(n_ts=n_ts,
                                                       ts_sz=ts_sz,
                                                       n_classes=n_classes,
                                                       l=0.1,
                                                       r=1)

# Define the model using parameters provided by the authors (except that we
# use fewer iterations here)
shp_clf = LearningShapelets(n_shapelets_per_size=shapelet_sizes,
                            optimizer=tf.optimizers.Adam(.01),
                            batch_size=16,
                            weight_regularizer=.01,
                            max_iter=200,
                            random_state=42,
                            verbose=0)
shp_clf.fit(X_train, y_train)

# Make predictions and calculate accuracy score
pred_labels = shp_clf.predict(X_test)
print("Correct classification rate:", accuracy_score(y_test, pred_labels))

# Plot the different discovered shapelets
plt.figure()
for i, sz in enumerate(shapelet_sizes.keys()):
    plt.subplot(len(shapelet_sizes), 1, i + 1)
    plt.title("%d shapelets of size %d" % (shapelet_sizes[sz], sz))
    for shp in shp_clf.shapelets_:
        if ts_size(shp) == sz:
            plt.plot(shp.ravel())
    plt.xlim([0, max(shapelet_sizes.keys()) - 1])

plt.tight_layout()
plt.show()

# The loss history is accessible via the `model_` that is a keras model
plt.figure()
plt.plot(numpy.arange(1, shp_clf.n_iter_ + 1), shp_clf.history_["loss"])
plt.title("Evolution of cross-entropy loss during training")
plt.xlabel("Epochs")
plt.show()





Total running time of the script: (1 minutes 11.990 seconds)



Download Jupyter notebook: plot_shapelets.ipynb




Download Python source code: plot_shapelets.py
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Early Classification

This example presents the concept of early classification.

Early classifiers are implemented in the
tslearn.early_classification module and in this example
we use the method from [1].

[1] A. Dachraoui, A. Bondu & A. Cornuejols. Early classification of time
series as a non myopic sequential decision making problem. ECML/PKDD 2015

# Author: Romain Tavenard
# License: BSD 3 clause
# sphinx_gallery_thumbnail_number = 2

import numpy
import matplotlib.pyplot as plt

from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.early_classification import NonMyopicEarlyClassifier
from tslearn.datasets import UCR_UEA_datasets

def plot_partial(time_series, t, y_true=0, y_pred=0, color="k"):
    plt.plot(time_series[:t+1].ravel(), color=color, linewidth=1.5)
    plt.plot(numpy.arange(t+1, time_series.shape[0]),
             time_series[t+1:].ravel(),
             linestyle="dashed", color=color, linewidth=1.5)
    plt.axvline(x=t, color=color, linewidth=1.5)
    plt.text(x=t - 20, y=time_series.max() - .25, s="Prediction time")
    plt.title(
        "Sample of class {} predicted as class {}".format(y_true, y_pred)
    )
    plt.xlim(0, time_series.shape[0] - 1)






Data loading and visualization

numpy.random.seed(0)
X_train, y_train, X_test, y_test = UCR_UEA_datasets().load_dataset("ECG200")

# Scale time series
X_train = TimeSeriesScalerMeanVariance().fit_transform(X_train)
X_test = TimeSeriesScalerMeanVariance().fit_transform(X_test)

size = X_train.shape[1]
n_classes = len(set(y_train))

plt.figure()
for i, cl in enumerate(set(y_train)):
    plt.subplot(n_classes, 1, i + 1)
    for ts in X_train[y_train == cl]:
        plt.plot(ts.ravel(), color="orange" if cl > 0 else "blue", alpha=.3)
    plt.xlim(0, size - 1)
plt.suptitle("Training time series")
plt.show()





[image: Training time series]

Model fitting

As observed in the following figure, the optimal classification time as
estimated by NonMyopicEarlyClassifier is data-dependent.

early_clf = NonMyopicEarlyClassifier(n_clusters=3,
                                     cost_time_parameter=1e-3,
                                     lamb=1e2,
                                     random_state=0)
early_clf.fit(X_train, y_train)

preds, times = early_clf.predict_class_and_earliness(X_test)

plt.figure()
plt.subplot(2, 1, 1)
ts_idx = 0
t = times[ts_idx]
plot_partial(X_test[ts_idx], t, y_test[ts_idx], preds[ts_idx], color="orange")


plt.subplot(2, 1, 2)
ts_idx = 9
t = times[ts_idx]
plot_partial(X_test[ts_idx], t, y_test[ts_idx], preds[ts_idx], color="blue")
plt.tight_layout()
plt.show()





[image: Sample of class 1 predicted as class 1, Sample of class -1 predicted as class 1]

Earliness-Accuracy trade-off

The trade-off between earliness and accuracy is controlled via
cost_time_parameter.

plt.figure()
hatches = ["///", "\\\\\\", "*"]
for i, cost_t in enumerate([1e-4, 1e-3, 1e-2]):
    early_clf.set_params(cost_time_parameter=cost_t)
    early_clf.fit(X_train, y_train)
    preds, times = early_clf.predict_class_and_earliness(X_test)
    plt.hist(times,
             alpha=.5, hatch=hatches[i],
             density=True,
             label="$\\alpha={}$".format(cost_t),
             bins=numpy.arange(0, size, 5))
plt.legend(loc="upper right")
plt.xlim(0, size - 1)
plt.xlabel("Prediction times")
plt.title("Impact of cost_time_parameter ($\\alpha$)")
plt.show()





[image: Impact of cost_time_parameter ($\alpha$)]Total running time of the script: (1 minutes 15.858 seconds)



Download Jupyter notebook: plot_early_classification.ipynb




Download Python source code: plot_early_classification.py
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Aligning discovered shapelets with timeseries

This example illustrates the use of the “Learning Shapelets” method in order
to learn a collection of shapelets that linearly separates the timeseries.
In this example, we will extract a single shapelet in order to distinguish
between two classes of the “Trace” dataset. Afterwards, we show how our time
series can be transformed to distances by aligning the shapelets along each of
the time series. This alignment is performed by shifting the smaller shapelet
across the longer time series and taking the minimal pointwise distance.

More information on the method can be found at:
http://fs.ismll.de/publicspace/LearningShapelets/.

[image: The aligned extracted shapelet, The distances between the time series and the shapelet]WARNING:absl:`lr` is deprecated in Keras optimizer, please use `learning_rate` or use the legacy optimizer, e.g.,tf.keras.optimizers.legacy.Adam.











# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt

from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMinMax
from tslearn.shapelets import LearningShapelets, \
    grabocka_params_to_shapelet_size_dict
from tensorflow.keras.optimizers import Adam

# Set a seed to ensure determinism
numpy.random.seed(42)

# Load the Trace dataset
X_train, y_train, _, _ = CachedDatasets().load_dataset("Trace")

# Filter out classes 2 and 4
mask = numpy.isin(y_train, [1, 3])
X_train = X_train[mask]
y_train = y_train[mask]

# Normalize the time series
X_train = TimeSeriesScalerMinMax().fit_transform(X_train)

# Get statistics of the dataset
n_ts, ts_sz = X_train.shape[:2]
n_classes = len(set(y_train))

# We will extract 1 shapelet and align it with a time series
shapelet_sizes = {20: 1}

# Define the model and fit it using the training data
shp_clf = LearningShapelets(n_shapelets_per_size=shapelet_sizes,
                            weight_regularizer=0.001,
                            optimizer=Adam(lr=0.01),
                            max_iter=250,
                            verbose=0,
                            scale=False,
                            random_state=42)
shp_clf.fit(X_train, y_train)

# Get the number of extracted shapelets, the (minimal) distances from
# each of the timeseries to each of the shapelets, and the corresponding
# locations (index) where the minimal distance was found
n_shapelets = sum(shapelet_sizes.values())
distances = shp_clf.transform(X_train)
predicted_locations = shp_clf.locate(X_train)

f, ax = plt.subplots(2, 1, sharex=True)

# Plot the shapelet and align it on the best matched time series. The optimizer
# will often enlarge the shapelet to create a larger gap between the distances
# of both classes. We therefore normalize the shapelet again before plotting.
test_ts_id = numpy.argmin(numpy.sum(distances, axis=1))
shap = shp_clf.shapelets_[0]
shap = TimeSeriesScalerMinMax().fit_transform(shap.reshape(1, -1, 1)).flatten()
pos = predicted_locations[test_ts_id, 0]
ax[0].plot(X_train[test_ts_id].ravel())
ax[0].plot(numpy.arange(pos, pos + len(shap)), shap, linewidth=2)
ax[0].axvline(pos, color='k', linestyle='--', alpha=0.25)
ax[0].set_title("The aligned extracted shapelet")

# We calculate the distances from the shapelet to the timeseries ourselves.
distances = []
time_series = X_train[test_ts_id].ravel()
for i in range(len(time_series) - len(shap)):
    distances.append(numpy.linalg.norm(time_series[i:i+len(shap)] - shap))
ax[1].plot(distances)
ax[1].axvline(numpy.argmin(distances), color='k', linestyle='--', alpha=0.25)
ax[1].set_title('The distances between the time series and the shapelet')

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 51.078 seconds)



Download Jupyter notebook: plot_shapelet_locations.ipynb




Download Python source code: plot_shapelet_locations.py
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Learning Shapelets: decision boundaries in 2D distance space

This example illustrates the use of the “Learning Shapelets” method in order
to learn a collection of shapelets that linearly separates the timeseries.
In this example, we will extract two shapelets which are then used to
transform our input time series in a two-dimensional space, which is called
the shapelet-transform space in the related literature. Moreover, we plot the
decision boundaries of our classifier for each of the different classes.

More information on the method can be found at:
http://fs.ismll.de/publicspace/LearningShapelets/.

[image: Shapelet $\mathbf{s}_1$, Shapelet $\mathbf{s}_2$, Class 1, Class 2, Class 3, Class 4, Distance transformed time series]# Author: Gilles Vandewiele
# License: BSD 3 clause

import numpy
from matplotlib import cm
import matplotlib.pyplot as plt

from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMinMax
from tslearn.shapelets import LearningShapelets
from tensorflow.keras.optimizers import Adam

# Set a seed to ensure determinism
numpy.random.seed(42)

# Load the Trace dataset
X_train, y_train, _, _ = CachedDatasets().load_dataset("Trace")

# Normalize the time series
X_train = TimeSeriesScalerMinMax().fit_transform(X_train)

# Get statistics of the dataset
n_ts, ts_sz = X_train.shape[:2]
n_classes = len(set(y_train))

# We will extract 2 shapelets and align them with the time series
shapelet_sizes = {20: 2}

# Define the model and fit it using the training data
shp_clf = LearningShapelets(n_shapelets_per_size=shapelet_sizes,
                            weight_regularizer=0.0001,
                            optimizer=Adam(lr=0.01),
                            max_iter=300,
                            verbose=0,
                            scale=False,
                            random_state=42)
shp_clf.fit(X_train, y_train)

# We will plot our distances in a 2D space
distances = shp_clf.transform(X_train).reshape((-1, 2))
weights, biases = shp_clf.get_weights('classification')

# Create a grid for our two shapelets on the left and distances on the right
viridis = cm.get_cmap('viridis', 4)
fig = plt.figure(constrained_layout=True)
gs = fig.add_gridspec(3, 9)
fig_ax1 = fig.add_subplot(gs[0, :2])
fig_ax2 = fig.add_subplot(gs[0, 2:4])
fig_ax3a = fig.add_subplot(gs[1, :2])
fig_ax3b = fig.add_subplot(gs[1, 2:4])
fig_ax3c = fig.add_subplot(gs[2, :2])
fig_ax3d = fig.add_subplot(gs[2, 2:4])
fig_ax4 = fig.add_subplot(gs[:, 4:])

# Plot our two shapelets on the left side
fig_ax1.plot(shp_clf.shapelets_[0])
fig_ax1.set_title('Shapelet $\mathbf{s}_1$')

fig_ax2.plot(shp_clf.shapelets_[1])
fig_ax2.set_title('Shapelet $\mathbf{s}_2$')

# Create the time series of each class
for i, subfig in enumerate([fig_ax3a, fig_ax3b, fig_ax3c, fig_ax3d]):
    for k, ts in enumerate(X_train[y_train == i + 1]):
        subfig.plot(ts.flatten(), c=viridis(i / 3), alpha=0.25)
        subfig.set_title('Class {}'.format(i + 1))
fig.text(x=.15, y=.02, s='Input time series', fontsize=12)

# Create a scatter plot of the 2D distances for the time series of each class.
for i, y in enumerate(numpy.unique(y_train)):
    fig_ax4.scatter(distances[y_train == y][:, 0],
                    distances[y_train == y][:, 1],
                    c=[viridis(i / 3)] * numpy.sum(y_train == y),
                    edgecolors='k',
                    label='Class {}'.format(y))

# Create a meshgrid of the decision boundaries
xmin = numpy.min(distances[:, 0]) - 0.1
xmax = numpy.max(distances[:, 0]) + 0.1
ymin = numpy.min(distances[:, 1]) - 0.1
ymax = numpy.max(distances[:, 1]) + 0.1
xx, yy = numpy.meshgrid(numpy.arange(xmin, xmax, (xmax - xmin)/200),
                        numpy.arange(ymin, ymax, (ymax - ymin)/200))
Z = []
for x, y in numpy.c_[xx.ravel(), yy.ravel()]:
    Z.append(numpy.argmax([biases[i] + weights[0][i]*x + weights[1][i]*y
                           for i in range(4)]))
Z = numpy.array(Z).reshape(xx.shape)
cs = fig_ax4.contourf(xx, yy, Z / 3, cmap=viridis, alpha=0.25)

fig_ax4.legend()
fig_ax4.set_xlabel('$d(\mathbf{x}, \mathbf{s}_1)$')
fig_ax4.set_ylabel('$d(\mathbf{x}, \mathbf{s}_2)$')
fig_ax4.set_xlim((xmin, xmax))
fig_ax4.set_ylim((ymin, ymax))
fig_ax4.set_title('Distance transformed time series')
plt.show()





Total running time of the script: (1 minutes 4.805 seconds)



Download Jupyter notebook: plot_shapelet_distances.ipynb




Download Python source code: plot_shapelet_distances.py
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Soft-DTW loss for PyTorch neural network

The aim here is to use the Soft Dynamic Time Warping metric as a loss function of a PyTorch Neural Network for
time series forecasting.

The torch-compatible implementation of the soft-DTW loss function is available from the
tslearn.metrics module.

# Authors: Yann Cabanes, Romain Tavenard
# License: BSD 3 clause
# sphinx_gallery_thumbnail_number = 2

"""Import the modules"""

import numpy as np
import matplotlib.pyplot as plt
from tslearn.datasets import CachedDatasets
from tslearn.metrics import SoftDTWLossPyTorch
import torch
from torch import nn






Load the dataset

Using the CachedDatasets utility from tslearn, we load the “Trace” time series dataset.
The dimensions of the arrays storing the time series training and testing datasets are (100, 275, 1).
We create a new dataset X_subset made of 50 random time series from classes indexed 1 to 3
(y_train < 4) in the training set: X_subset is of shape (50, 275, 1).

data_loader = CachedDatasets()
X_train, y_train, X_test, y_test = data_loader.load_dataset("Trace")

X_subset = X_train[y_train < 4]
np.random.shuffle(X_subset)
X_subset = X_subset[:50]







Multi-step ahead forecasting

In this section, our goal is to implement a single-hidden-layer perceptron for time series forecasting.
Our network will be trained to minimize the soft-DTW metric.
We will rely on a torch-compatible implementation of the soft-DTW loss function.
The code below is an implementation of a generic Multi-Layer-Perceptron class in torch,
and we will rely on it for the implementation of a forecasting MLP with softDTW loss.

# Note that Soft-DTW can take negative values due to the regularization parameter gamma.
# The normalized soft-DTW (also coined soft-DTW divergence) between the time series x and y is defined as:
# Soft-DTW(x, y) - (Soft-DTW(x, x) + Soft-DTW(y, y)) / 2
# The normalized Soft-DTW is always positive.
# However, the computation time of the normalized soft-DTW equals three times the computation time of the Soft-DTW.

class MultiLayerPerceptron(torch.nn.Module):
    def __init__(self, layers, loss=None):
        # At init, we define our layers
        super(MultiLayerPerceptron, self).__init__()
        self.layers = layers
        if loss is None:
            self.loss = torch.nn.MSELoss(reduction="none")
        else:
            self.loss = loss
        self.optimizer = torch.optim.SGD(self.parameters(), lr=0.001)

    def forward(self, X):
        # The forward method informs about the forward pass: how one computes outputs of the network
        # from the input and the parameters of the layers registered at init
        if not isinstance(X, torch.Tensor):
            X = torch.Tensor(X)
        batch_size = X.size(0)
        X_reshaped = torch.reshape(X, (batch_size, -1))  # Manipulations to deal with time series format
        output = self.layers(X_reshaped)
        return torch.reshape(output, (batch_size, -1, 1))  # Manipulations to deal with time series format

    def fit(self, X, y, max_epochs=10):
        # The fit method performs the actual optimization
        X_torch = torch.Tensor(X)
        y_torch = torch.Tensor(y)

        for e in range(max_epochs):
            self.optimizer.zero_grad()
            # Forward pass
            y_pred = self.forward(X_torch)
            # Compute Loss
            loss = self.loss(y_pred, y_torch).mean()
            # Backward pass
            loss.backward()
            self.optimizer.step()







Using MSE as a loss function

We define an MLP class that would allow training a single-hidden-layer model using
mean squared error (MSE) as a loss function to be optimized.
We train the network for 1000 epochs on a forecasting task that would consist,
given the first 150 elements of a time series, in predicting the next 125 ones.

model = MultiLayerPerceptron(
    layers=nn.Sequential(
        nn.Linear(in_features=150, out_features=256),
        nn.ReLU(),
        nn.Linear(in_features=256, out_features=125)
    )
)

# Here one needs to define what X and y are, obviously
model.fit(X_subset[:, :150], X_subset[:, 150:], max_epochs=1000)

ts_index = 50
y_pred = model(X_test[:, :150, 0]).detach().numpy()

plt.figure()
plt.title('Multi-step ahead forecasting using MSE')
plt.plot(X_test[ts_index].ravel())
plt.plot(np.arange(150, 275), y_pred[ts_index], 'r-')





[image: Multi-step ahead forecasting using MSE][<matplotlib.lines.Line2D object at 0x7ff23b35c850>]







Using Soft-DTW as a loss function

We take inspiration from the code above to define an MLP class that would allow training
a single-hidden-layer model using soft-DTW as a criterion to be optimized.
We train the network for 100 epochs on a forecasting task that would consist, given the first 150 elements
of a time series, in predicting the next 125 ones.

model = MultiLayerPerceptron(
    layers=nn.Sequential(
        nn.Linear(in_features=150, out_features=256),
        nn.ReLU(),
        nn.Linear(in_features=256, out_features=125)
    ),
    loss=SoftDTWLossPyTorch(gamma=0.1)
)

model.fit(X_subset[:, :150], X_subset[:, 150:], max_epochs=100)

y_pred = model(X_test[:, :150, 0]).detach().numpy()

plt.figure()
plt.title('Multi-step ahead forecasting using Soft-DTW loss')
plt.plot(X_test[ts_index].ravel())
plt.plot(np.arange(150, 275), y_pred[ts_index], 'r-')





[image: Multi-step ahead forecasting using Soft-DTW loss][<matplotlib.lines.Line2D object at 0x7ff22b6d73a0>]





Total running time of the script: (0 minutes 10.831 seconds)



Download Jupyter notebook: plot_soft_dtw_loss_for_pytorch_nn.ipynb




Download Python source code: plot_soft_dtw_loss_for_pytorch_nn.py
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Model Persistence

Many tslearn models can be saved to disk and used for predictions
at a later time. This can be particularly useful when a model takes
a long time to train.

Available formats: hdf5, json, pickle

Save a model to disk:

model.to_<format>





Load a model from disk:

model.from_<format>





Basic usage

# Instantiate a model
model = ModelClass(<hyper-parameters>)

# Train the model
model.fit(X_train)

# Save the model to disk
model.to_hdf5('./trained_model.hdf5')

# Load model from disk
model.from_hdf5('./trained_mode.hdf5')

# Make predictions
y = model.predict(X_test)






Note

For the following models the training data are saved to disk and
may result in a large model file if the trainig dataset is large:
KNeighborsTimeSeries, KNeighborsTimeSeriesClassifier, and
KernelKMeans
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# Example using KShape

import numpy
import matplotlib.pyplot as plt

from tslearn.clustering import KShape
from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMeanVariance

seed = 0
numpy.random.seed(seed)
X_train, y_train, X_test, y_test = CachedDatasets().load_dataset("Trace")

# Keep first 3 classes
X_train = X_train[y_train < 4]
numpy.random.shuffle(X_train)
# Keep only 50 time series
X_train = TimeSeriesScalerMeanVariance().fit_transform(X_train[:50])
sz = X_train.shape[1]

# Instantiate k-Shape model
ks = KShape(n_clusters=3, verbose=True, random_state=seed)

# Train
ks.fit(X_train)

# Save model
ks.to_hdf5('./ks_trained.hdf5')

# Load model
trained_ks = KShape.from_hdf5('./ks_trained.hdf5')

# Use loaded model to make predictions
y_pred = trained_ks.predict(X_train)

plt.figure()
for yi in range(3):
    plt.subplot(3, 1, 1 + yi)
    for xx in X_train[y_pred == yi]:
        plt.plot(xx.ravel(), "k-", alpha=.2)
    plt.plot(ks.cluster_centers_[yi].ravel(), "r-")
    plt.xlim(0, sz)
    plt.ylim(-4, 4)
    plt.title("Cluster %d" % (yi + 1))

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 10.789 seconds)



Download Jupyter notebook: plot_serialize_models.ipynb




Download Python source code: plot_serialize_models.py
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PAA and SAX features

This example presents a comparison between PAA [1], SAX [2] and 1d-SAX [3]
features.

PAA (Piecewise Aggregate Approximation) corresponds to a downsampling of the
original time series and, in each segment (segments have fixed size), the mean
value is retained.

SAX (Symbolic Aggregate approXimation) builds upon PAA by quantizing the mean
value. Quantization boundaries are computed for all symbols to be equiprobable,
under a standard normal distribution assumption.

Finally, 1d-SAX is an extension of SAX in which each segment is represented
by an affine function (2 parameters per segment are hence quantized: slope and
mean value).

[1] E. Keogh & M. Pazzani. Scaling up dynamic time warping for datamining
applications. SIGKDD 2000, pp. 285–289.

[2] J. Lin, E. Keogh, L. Wei, et al. Experiencing SAX: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery,
2007. vol. 15(107)

[3] S. Malinowski, T. Guyet, R. Quiniou, R. Tavenard. 1d-SAX: a Novel
Symbolic Representation for Time Series. IDA 2013.

[image: Raw time series, PAA, SAX, 8 symbols, 1d-SAX, 64 symbols(8x8)]# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt

from tslearn.generators import random_walks
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.piecewise import PiecewiseAggregateApproximation
from tslearn.piecewise import SymbolicAggregateApproximation, \
    OneD_SymbolicAggregateApproximation

numpy.random.seed(0)
# Generate a random walk time series
n_ts, sz, d = 1, 100, 1
dataset = random_walks(n_ts=n_ts, sz=sz, d=d)
scaler = TimeSeriesScalerMeanVariance(mu=0., std=1.)  # Rescale time series
dataset = scaler.fit_transform(dataset)

# PAA transform (and inverse transform) of the data
n_paa_segments = 10
paa = PiecewiseAggregateApproximation(n_segments=n_paa_segments)
paa_dataset_inv = paa.inverse_transform(paa.fit_transform(dataset))

# SAX transform
n_sax_symbols = 8
sax = SymbolicAggregateApproximation(n_segments=n_paa_segments,
                                     alphabet_size_avg=n_sax_symbols)
sax_dataset_inv = sax.inverse_transform(sax.fit_transform(dataset))

# 1d-SAX transform
n_sax_symbols_avg = 8
n_sax_symbols_slope = 8
one_d_sax = OneD_SymbolicAggregateApproximation(
    n_segments=n_paa_segments,
    alphabet_size_avg=n_sax_symbols_avg,
    alphabet_size_slope=n_sax_symbols_slope)
transformed_data = one_d_sax.fit_transform(dataset)
one_d_sax_dataset_inv = one_d_sax.inverse_transform(transformed_data)

plt.figure()
plt.subplot(2, 2, 1)  # First, raw time series
plt.plot(dataset[0].ravel(), "b-")
plt.title("Raw time series")

plt.subplot(2, 2, 2)  # Second, PAA
plt.plot(dataset[0].ravel(), "b-", alpha=0.4)
plt.plot(paa_dataset_inv[0].ravel(), "b-")
plt.title("PAA")

plt.subplot(2, 2, 3)  # Then SAX
plt.plot(dataset[0].ravel(), "b-", alpha=0.4)
plt.plot(sax_dataset_inv[0].ravel(), "b-")
plt.title("SAX, %d symbols" % n_sax_symbols)

plt.subplot(2, 2, 4)  # Finally, 1d-SAX
plt.plot(dataset[0].ravel(), "b-", alpha=0.4)
plt.plot(one_d_sax_dataset_inv[0].ravel(), "b-")
plt.title("1d-SAX, %d symbols"
          "(%dx%d)" % (n_sax_symbols_avg * n_sax_symbols_slope,
                       n_sax_symbols_avg,
                       n_sax_symbols_slope))

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 6.257 seconds)



Download Jupyter notebook: plot_sax.ipynb




Download Python source code: plot_sax.py
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Matrix Profile

This example presents a toy example of using Matrix Profile [1] for anomaly
detection.

Matrix Profile transforms a time series into a sequence of 1-Nearest-Neighbor
distances between its subseries.

[1] C. M. Yeh, Y. Zhu, L. Ulanova, N.Begum et al.
Matrix Profile I: All Pairs Similarity Joins for Time Series: A
Unifying View that Includes Motifs, Discords and Shapelets.
ICDM 2016.

[image: Raw time series, Matrix Profile]# Author: Romain Tavenard
# License: BSD 3 clause

import numpy
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms

from tslearn.matrix_profile import MatrixProfile

s_x = numpy.array(
    [-0.790, -0.765, -0.734, -0.700, -0.668, -0.639, -0.612, -0.587, -0.564,
     -0.544, -0.529, -0.518, -0.509, -0.502, -0.494, -0.488, -0.482, -0.475,
     -0.472, -0.470, -0.465, -0.464, -0.461, -0.458, -0.459, -0.460, -0.459,
     -0.458, -0.448, -0.431, -0.408, -0.375, -0.333, -0.277, -0.196, -0.090,
     0.047, 0.220, 0.426, 0.671, 0.962, 1.300, 1.683, 2.096, 2.510, 2.895,
     3.219, 3.463, 3.621, 3.700, 3.713, 3.677, 3.606, 3.510, 3.400, 3.280,
     3.158, 3.038, 2.919, 2.801, 2.676, 2.538, 2.382, 2.206, 2.016, 1.821,
     1.627, 1.439, 1.260, 1.085, 0.917, 0.758, 0.608, 0.476, 0.361, 0.259,
     0.173, 0.096, 0.027, -0.032, -0.087, -0.137, -0.179, -0.221, -0.260,
     -0.293, -0.328, -0.359, -0.385, -0.413, -0.437, -0.458, -0.480, -0.498,
     -0.512, -0.526, -0.536, -0.544, -0.552, -0.556, -0.561, -0.565, -0.568,
     -0.570, -0.570, -0.566, -0.560, -0.549, -0.532, -0.510, -0.480, -0.443,
     -0.402, -0.357, -0.308, -0.256, -0.200, -0.139, -0.073, -0.003, 0.066,
     0.131, 0.186, 0.229, 0.259, 0.276, 0.280, 0.272, 0.256, 0.234, 0.209,
     0.186, 0.162, 0.139, 0.112, 0.081, 0.046, 0.008, -0.032, -0.071, -0.110,
     -0.147, -0.180, -0.210, -0.235, -0.256, -0.275, -0.292, -0.307, -0.320,
     -0.332, -0.344, -0.355, -0.363, -0.367, -0.364, -0.351, -0.330, -0.299,
     -0.260, -0.217, -0.172, -0.128, -0.091, -0.060, -0.036, -0.022, -0.016,
     -0.020, -0.037, -0.065, -0.104, -0.151, -0.201, -0.253, -0.302, -0.347,
     -0.388, -0.426, -0.460, -0.491, -0.517, -0.539, -0.558, -0.575, -0.588,
     -0.600, -0.606, -0.607, -0.604, -0.598, -0.589, -0.577, -0.558, -0.531,
     -0.496, -0.454, -0.410, -0.364, -0.318, -0.276, -0.237, -0.203, -0.176,
     -0.157, -0.145, -0.142, -0.145, -0.154, -0.168, -0.185, -0.206, -0.230,
     -0.256, -0.286, -0.318, -0.351, -0.383, -0.414, -0.442, -0.467, -0.489,
     -0.508, -0.523, -0.535, -0.544, -0.552, -0.557, -0.560, -0.560, -0.557,
     -0.551, -0.542, -0.531, -0.519, -0.507, -0.494, -0.484, -0.476, -0.469,
     -0.463, -0.456, -0.449, -0.442, -0.435, -0.431, -0.429, -0.430, -0.435,
     -0.442, -0.452, -0.465, -0.479, -0.493, -0.506, -0.517, -0.526, -0.535,
     -0.548, -0.567, -0.592, -0.622, -0.655, -0.690, -0.728, -0.764, -0.795,
     -0.815, -0.823, -0.821]).reshape((-1, 1))

mp = MatrixProfile(subsequence_length=20, scale=False)
mp_series = mp.fit_transform([s_x])[0]
t_star = numpy.argmax(mp_series.ravel())

plt.figure()
ax = plt.subplot(2, 1, 1)  # First, raw time series
trans = mtransforms.blended_transform_factory(ax.transData, ax.transAxes)
plt.plot(s_x.ravel(), "b-")
plt.xlim([0, s_x.shape[0]])
plt.axvline(x=t_star,  c="red", linewidth=2)
plt.fill_between(x=[t_star, t_star+mp.subsequence_length], y1=0., y2=1.,
                 facecolor="r", alpha=.2, transform=trans)
plt.title("Raw time series")

plt.subplot(2, 1, 2)  # Second, Matrix Profile
plt.plot(mp_series.ravel(), "b-")
plt.axvline(x=t_star,  c="red", linewidth=2, linestyle="dashed")
plt.xlim([0, s_x.shape[0]])
plt.title("Matrix Profile")

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 0.453 seconds)



Download Jupyter notebook: plot_matrix_profile.ipynb




Download Python source code: plot_matrix_profile.py
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Distance and Matrix Profiles

This example illustrates how the matrix profile is calculated. For each
segment of a timeseries with a specified length, the distances between
each subsequence and that segment are calculated. The smallest distance is
returned, except for trivial match on the location where the segment is
extracted from which is equal to zero.

[image: The time series, Segment distance profile, Matrix profile]# Author: Gilles Vandewiele
# License: BSD 3 clause

import numpy
import matplotlib.patches as patches
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import matplotlib.pyplot as plt

from tslearn.datasets import CachedDatasets
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from tslearn.matrix_profile import MatrixProfile

import warnings
warnings.filterwarnings('ignore')

# Set a seed to ensure determinism
numpy.random.seed(42)

# Load the Trace dataset
X_train, y_train, _, _ = CachedDatasets().load_dataset("Trace")

# Normalize the time series
scaler = TimeSeriesScalerMeanVariance()
X_train = scaler.fit_transform(X_train)

# Take the first time series
ts = X_train[0, :, :]

# We will take the spike as a segment
subseq_len = 20
start = 45
segment = ts[start:start + subseq_len]

# Create our matrix profile
matrix_profiler = MatrixProfile(subsequence_length=subseq_len, scale=True)
mp = matrix_profiler.fit_transform([ts]).flatten()

# Create a grid for our plots
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True)

# Plot our timeseries
ax1.plot(ts, c='b', label='time series')
ax1.add_patch(patches.Rectangle((start, numpy.min(ts) - 0.1), subseq_len,
                                numpy.max(ts) - numpy.min(ts) + 0.2,
                                facecolor='b', alpha=0.25,
                                label='segment'))
ax1.axvline(start, c='b', linestyle='--', lw=2, alpha=0.5,
            label='segment start')
ax1.legend(loc='lower right', ncol=4, fontsize=8,
           handletextpad=0.1, columnspacing=0.5)
ax1.set_title('The time series')

# Inset plot with our segment
fig_ax_in = ax1.inset_axes([0.5, 0.55, 0.2, 0.4])
fig_ax_in.plot(scaler.fit_transform(segment.reshape(1, -1, 1))[0], c='b')
ax1.indicate_inset(inset_ax=fig_ax_in, transform=ax1.transData,
                   bounds=[start, numpy.min(ts) - 0.1, subseq_len,
                           numpy.max(ts) - numpy.min(ts) + 0.2],
                   linestyle='--', alpha=0.75)
fig_ax_in.tick_params(labelleft=False, labelbottom=False)
fig_ax_in.xaxis.set_visible(False)
fig_ax_in.yaxis.set_visible(False)

# Calculate a distance profile, which represents the distance from each
# subsequence of the time series and the segment
distances = []
for i in range(len(ts) - subseq_len):
    scaled_ts = scaler.fit_transform(ts[i:i+subseq_len].reshape(1, -1, 1))
    scaled_segment = scaler.fit_transform(segment.reshape(1, -1, 1))
    distances.append(numpy.linalg.norm(scaled_ts - scaled_segment))

# Mask out the distances in the trivial match zone, get the nearest
# neighbor and put the old distances back in place so we can plot them.
distances = numpy.array(distances)
mask = list(range(start - subseq_len // 4, start + subseq_len // 4))
old_distances = distances[mask]
distances[mask] = numpy.inf
nearest_neighbor = numpy.argmin(distances)
dist_nn = distances[nearest_neighbor]
distances[mask] = old_distances

# Plot our distance profile
ax2.plot(distances, c='b')
ax2.set_title('Segment distance profile')
dist_diff = numpy.max(distances) - numpy.min(distances)
ax2.add_patch(patches.Rectangle((start - subseq_len // 4,
                                 numpy.min(distances) - 0.1),
                                subseq_len // 2,
                                dist_diff + 0.2,
                                facecolor='r', alpha=0.5,
                                label='exclusion zone'))
ax2.scatter(nearest_neighbor, dist_nn, c='r', marker='x', s=50,
            label='neighbor dist = {}'.format(numpy.around(dist_nn, 3)))
ax2.axvline(start, c='b', linestyle='--', lw=2, alpha=0.5,
            label='segment start')
ax2.legend(loc='lower right', fontsize=8, ncol=3,
           handletextpad=0.1, columnspacing=0.5)

# Plot our matrix profile
ax3.plot(mp, c='b')
ax3.set_title('Matrix profile')
ax3.scatter(start, mp[start],
            c='r', marker='x', s=75,
            label='MP segment = {}'.format(numpy.around(mp[start], 3)))
ax3.axvline(start, c='b', linestyle='--', lw=2, alpha=0.5,
            label='segment start')
ax3.legend(loc='lower right', fontsize=8,
           handletextpad=0.1, columnspacing=0.25)

plt.tight_layout()
plt.show()





Total running time of the script: (0 minutes 2.839 seconds)



Download Jupyter notebook: plot_distance_and_matrix_profile.ipynb




Download Python source code: plot_distance_and_matrix_profile.py
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Citing tslearn

If you use tslearn in a scientific publication, we would appreciate
citations:


Bibtex entry:

@article{JMLR:v21:20-091,
  author  = {Romain Tavenard and Johann Faouzi and Gilles Vandewiele and
             Felix Divo and Guillaume Androz and Chester Holtz and
             Marie Payne and Roman Yurchak and Marc Ru{\ss}wurm and
             Kushal Kolar and Eli Woods},
  title   = {Tslearn, A Machine Learning Toolkit for Time Series Data},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {118},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/20-091.html}
}
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