tslearn.preprocessing.TimeSeriesScalerMinMax

class tslearn.preprocessing.TimeSeriesScalerMinMax(value_range=(0.0, 1.0))[source]

Scaler for time series. Scales time series so that their span in each dimension is between min and max where value_range=(min, max).

Parameters:
value_rangetuple (default: (0., 1.))

The minimum and maximum value for the output time series.

Notes

This method requires a dataset of equal-sized time series.

NaNs within a time series are ignored when calculating min and max.

Examples

>>> TimeSeriesScalerMinMax(value_range=(1., 2.)).fit_transform([[0, 3, 6]])
array([[[1. ],
        [1.5],
        [2. ]]])
>>> TimeSeriesScalerMinMax(value_range=(1., 2.)).fit_transform(
...     [[numpy.nan, 3, 6]]
... )
array([[[nan],
        [ 1.],
        [ 2.]]])

Methods

fit(X[, y])

A dummy method such that it complies to the sklearn requirements.

fit_transform(X[, y])

Fit to data, then transform it.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

set_output(*[, transform])

Set output container.

set_params(**params)

Set the parameters of this estimator.

transform(X[, y])

Will normalize (min-max) each of the timeseries.

fit(X, y=None, **kwargs)[source]

A dummy method such that it complies to the sklearn requirements. Since this method is completely stateless, it just returns itself.

Parameters:
X

Ignored

Returns:
self
fit_transform(X, y=None, **kwargs)[source]

Fit to data, then transform it.

Parameters:
Xarray-like of shape (n_ts, sz, d)

Time series dataset to be rescaled.

Returns:
numpy.ndarray

Resampled time series dataset.

get_metadata_routing()[source]

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

set_output(*, transform=None)[source]

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters:
transform{“default”, “pandas”}, default=None

Configure output of transform and fit_transform.

  • “default”: Default output format of a transformer

  • “pandas”: DataFrame output

  • None: Transform configuration is unchanged

Returns:
selfestimator instance

Estimator instance.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

transform(X, y=None, **kwargs)[source]

Will normalize (min-max) each of the timeseries. IMPORTANT: this transformation is completely stateless, and is applied to each of the timeseries individually.

Parameters:
Xarray-like of shape (n_ts, sz, d)

Time series dataset to be rescaled.

Returns:
numpy.ndarray

Rescaled time series dataset.

Examples using tslearn.preprocessing.TimeSeriesScalerMinMax

Nearest neighbors

Nearest neighbors

Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier

Hyper-parameter tuning of a Pipeline with KNeighborsTimeSeriesClassifier

Soft-DTW weighted barycenters

Soft-DTW weighted barycenters

SVM and GAK

SVM and GAK

Learning Shapelets

Learning Shapelets

Aligning discovered shapelets with timeseries

Aligning discovered shapelets with timeseries

Learning Shapelets: decision boundaries in 2D distance space

Learning Shapelets: decision boundaries in 2D distance space